KWIVER: An open source cross-platform video exploitation framework

Keith Fieldhouse, Matthew J. Leotta, Arslan Basharat, Russell Blue, David Stoup, Chuck Atkins, Linus Sherrill, B. Boeckel, Paul Tunison, Jacob Becker, Matthew Dawkins, Matthew Woehlke, Roderic Collins, M. Turek, A. Hoogs
{"title":"KWIVER: An open source cross-platform video exploitation framework","authors":"Keith Fieldhouse, Matthew J. Leotta, Arslan Basharat, Russell Blue, David Stoup, Chuck Atkins, Linus Sherrill, B. Boeckel, Paul Tunison, Jacob Becker, Matthew Dawkins, Matthew Woehlke, Roderic Collins, M. Turek, A. Hoogs","doi":"10.1109/AIPR.2014.7041910","DOIUrl":null,"url":null,"abstract":"We introduce KWIVER, a cross-platform video exploitation framework that Kitware has begun releasing as open source. Kitware is utilizing a multi-tiered open-source approach to reach as wide an audience as possible. Kitware's government-funded efforts to develop critical defense technology will be released back to the defense community via Forge.mil, a government open source repository. Infrastructure, algorithms, and systems without release restrictions will be provided to the larger video analytics community via kwiver.org and GitHub. Our goal is to provide a video analytics technology baseline for repeatable and reproducible experiments and to serve as a framework for the development of computer vision and machine learning systems. We hope that KWIVER will provide a focal point for collaboration and contributions from groups across the community.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"281 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce KWIVER, a cross-platform video exploitation framework that Kitware has begun releasing as open source. Kitware is utilizing a multi-tiered open-source approach to reach as wide an audience as possible. Kitware's government-funded efforts to develop critical defense technology will be released back to the defense community via Forge.mil, a government open source repository. Infrastructure, algorithms, and systems without release restrictions will be provided to the larger video analytics community via kwiver.org and GitHub. Our goal is to provide a video analytics technology baseline for repeatable and reproducible experiments and to serve as a framework for the development of computer vision and machine learning systems. We hope that KWIVER will provide a focal point for collaboration and contributions from groups across the community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KWIVER:一个开源的跨平台视频开发框架
我们介绍KWIVER,一个跨平台的视频开发框架,Kitware已经开始作为开源发布。Kitware利用多层次的开源方法来接触尽可能广泛的受众。Kitware在政府资助下开发的关键国防技术将通过政府开源存储库Forge.mil发布给国防社区。没有发布限制的基础设施、算法和系统将通过kwiver.org和GitHub提供给更大的视频分析社区。我们的目标是为可重复和可再现的实验提供一个视频分析技术基线,并作为计算机视觉和机器学习系统开发的框架。我们希望KWIVER将为整个社区的团体提供一个协作和贡献的焦点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning tree-structured approximations for conditional random fields Multi-resolution deblurring High dynamic range (HDR) video processing for the exploitation of high bit-depth sensors in human-monitored surveillance Extension of no-reference deblurring methods through image fusion 3D sparse point reconstructions of atmospheric nuclear detonations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1