{"title":"Pothole Detection and Estimation of Repair Cost in Bangladeshi Street: AI-based Multiple Case Analysis","authors":"Md. Safaiat Hossain, Rafiul Bari Angan, M. Hasan","doi":"10.1109/ECCE57851.2023.10101579","DOIUrl":null,"url":null,"abstract":"This study focuses on the real-world application of a state-of-the-art convolution neural network (CNN) based pothole detection model and its practical implications. A multiple-scenario analysis was performed, combining several experiments based on video recorded at different environmental conditions and vehicle speeds. Moreover, the performance of the CNN-based YOLOv4-tiny AI model was compared with an expert human grader (civil engineer). The findings from the comparative analysis suggest that out of five different cases, the AI-based model (69.57-85.00%) outperformed the human evaluator (43.67-80.67%) in four cases, with the highest accuracy of 85%. This indicates the utility of using an AI-based approach to pothole detection, especially in regional areas of developing countries like Bangladesh.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study focuses on the real-world application of a state-of-the-art convolution neural network (CNN) based pothole detection model and its practical implications. A multiple-scenario analysis was performed, combining several experiments based on video recorded at different environmental conditions and vehicle speeds. Moreover, the performance of the CNN-based YOLOv4-tiny AI model was compared with an expert human grader (civil engineer). The findings from the comparative analysis suggest that out of five different cases, the AI-based model (69.57-85.00%) outperformed the human evaluator (43.67-80.67%) in four cases, with the highest accuracy of 85%. This indicates the utility of using an AI-based approach to pothole detection, especially in regional areas of developing countries like Bangladesh.