D. Brown, R. Carey, S. Dye, E. Hazen, D. Higby, J. Miller, L. Sulak, J. Sullivan, W. Worstell, W. Brower, H. Paar, D. Kefford, R. Pisani, K. Segall, D. Wall, D. Winn, N. Akchurin, J. Langland, Y. Onel, J. Sandro, C. Bromberg, R. Miller, B. Moore, J. Reidy, W. Bugg, R. Kroeger, R. Wigmans, F. Ayer, C. Elder, H. Cohn, Y. Kamyshkov, F. Placil, M. Rennich, A. Savin, K. Shmakov, A. Smirnov, K. Young
{"title":"Copper-scintillating fiber hadron calorimeter tower prototypes","authors":"D. Brown, R. Carey, S. Dye, E. Hazen, D. Higby, J. Miller, L. Sulak, J. Sullivan, W. Worstell, W. Brower, H. Paar, D. Kefford, R. Pisani, K. Segall, D. Wall, D. Winn, N. Akchurin, J. Langland, Y. Onel, J. Sandro, C. Bromberg, R. Miller, B. Moore, J. Reidy, W. Bugg, R. Kroeger, R. Wigmans, F. Ayer, C. Elder, H. Cohn, Y. Kamyshkov, F. Placil, M. Rennich, A. Savin, K. Shmakov, A. Smirnov, K. Young","doi":"10.1109/NSSMIC.1992.301223","DOIUrl":null,"url":null,"abstract":"The authors have constructed and tested seven projective scintillating fiber-copper absorber hadron calorimeter towers for high-energy hadron collider detectors. Each tower contained 2.25% by volume scintillating fibers, embedded between copper laminations, 10.6 lambda deep. A hadron energy resolution of sigma /E=91%/ square root E was obtained. Pions exhibited uniform response when scanned across boundaries between modules and through a range of incident angles with respect to the fibers. The e/ pi ratio is 1.08+or-0.02 for energies between 10 and 20 GeV, with a response of approximately 60 p.e./GeV. The muon Landau distributions well-resolved from pedestals were observed.<<ETX>>","PeriodicalId":447239,"journal":{"name":"IEEE Conference on Nuclear Science Symposium and Medical Imaging","volume":"91 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Nuclear Science Symposium and Medical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1992.301223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The authors have constructed and tested seven projective scintillating fiber-copper absorber hadron calorimeter towers for high-energy hadron collider detectors. Each tower contained 2.25% by volume scintillating fibers, embedded between copper laminations, 10.6 lambda deep. A hadron energy resolution of sigma /E=91%/ square root E was obtained. Pions exhibited uniform response when scanned across boundaries between modules and through a range of incident angles with respect to the fibers. The e/ pi ratio is 1.08+or-0.02 for energies between 10 and 20 GeV, with a response of approximately 60 p.e./GeV. The muon Landau distributions well-resolved from pedestals were observed.<>