Kernel local fisher discriminant analysis for fault diagnosis in chemical process

Wang Jian, Han Zhiyan, Feng Jian
{"title":"Kernel local fisher discriminant analysis for fault diagnosis in chemical process","authors":"Wang Jian, Han Zhiyan, Feng Jian","doi":"10.1109/SOLI.2013.6611486","DOIUrl":null,"url":null,"abstract":"Though Fisher discriminant analysis (FDA) is an outstanding method for fault diagnosis, it is difficult to extract the discriminant information in complex industrial environment. One of the reasons is that FDA can not remain the geometric structure information of the sample space truly due to non-Gaussian and nonlinear structures characteristics of data in industrial process. In this paper, kernel local fisher discriminant analysis (KLFDA) is proposed to solve the problem. The proposed approach is applied to Tennessee Eastman process (TEP). The results demonstrate that KLFDA shows better fault diagnosis performance than conventional FDA.","PeriodicalId":147180,"journal":{"name":"Proceedings of 2013 IEEE International Conference on Service Operations and Logistics, and Informatics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 IEEE International Conference on Service Operations and Logistics, and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOLI.2013.6611486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Though Fisher discriminant analysis (FDA) is an outstanding method for fault diagnosis, it is difficult to extract the discriminant information in complex industrial environment. One of the reasons is that FDA can not remain the geometric structure information of the sample space truly due to non-Gaussian and nonlinear structures characteristics of data in industrial process. In this paper, kernel local fisher discriminant analysis (KLFDA) is proposed to solve the problem. The proposed approach is applied to Tennessee Eastman process (TEP). The results demonstrate that KLFDA shows better fault diagnosis performance than conventional FDA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核局部fisher判别分析在化工过程故障诊断中的应用
Fisher判别分析(FDA)是一种杰出的故障诊断方法,但在复杂的工业环境中难以提取出判别信息。其中一个原因是由于工业过程中数据的非高斯和非线性结构特征,使得FDA不能真实地保留样本空间的几何结构信息。本文提出了核局部fisher判别分析(KLFDA)来解决这一问题。将该方法应用于田纳西伊士曼过程(TEP)。结果表明,KLFDA比传统FDA具有更好的故障诊断性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An empirical study of applying Kano model and TRIZ business evolution trends to improve E-commerce service quality Value capture and value creation in high-velocity networked environments Research on personnel assignment in joint operation analysis with a large number of tasks Empirical analysis on operational efficiency and its influential factors of road transportation industry of China Study on revenue sharing contract mechanism in supply chain under non-cooperative decision-making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1