Numerical Simulation for the Interaction between Soil and Cable in Deep Foundation Pit

D. Qing, Zi-qiang Zhu, Qun-yi Liu, Xian-qi He
{"title":"Numerical Simulation for the Interaction between Soil and Cable in Deep Foundation Pit","authors":"D. Qing, Zi-qiang Zhu, Qun-yi Liu, Xian-qi He","doi":"10.1109/ICCMS.2009.16","DOIUrl":null,"url":null,"abstract":"Simplified mechanical model can not reflect the real situation of the interaction between foundation and cables. Then numerical software FLAC3D is used to simulate the procedure of foundation excavation and cable reinforcement. Deformation responses of foundation are analyzed as well as the mechanical response of cables. The results show that, (1) the procedure of excavation leads to the deformation of soil mass in foundation, which is the reasons of tensile failure and shear failure; for tensile failure areas, the length of soil nailing should be set surpass the slip plane; for shear failure areas, the density of cables should be set larger at the place of shear opening. (2) after excavation, the axial stress distributes different along the cable shaft, location of maximum axial stress along cable can indicate the location of potential slip plane. FLAC3D can simulate the excavation and reinforcement of foundation reasonably, whose result can give guidance for design and construction.","PeriodicalId":325964,"journal":{"name":"2009 International Conference on Computer Modeling and Simulation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMS.2009.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Simplified mechanical model can not reflect the real situation of the interaction between foundation and cables. Then numerical software FLAC3D is used to simulate the procedure of foundation excavation and cable reinforcement. Deformation responses of foundation are analyzed as well as the mechanical response of cables. The results show that, (1) the procedure of excavation leads to the deformation of soil mass in foundation, which is the reasons of tensile failure and shear failure; for tensile failure areas, the length of soil nailing should be set surpass the slip plane; for shear failure areas, the density of cables should be set larger at the place of shear opening. (2) after excavation, the axial stress distributes different along the cable shaft, location of maximum axial stress along cable can indicate the location of potential slip plane. FLAC3D can simulate the excavation and reinforcement of foundation reasonably, whose result can give guidance for design and construction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深基坑土索相互作用的数值模拟
简化的力学模型不能反映基础与锚索相互作用的真实情况。然后利用FLAC3D数值模拟软件对基坑开挖和锚索加固过程进行了数值模拟。分析了地基的变形响应和索的受力响应。结果表明:(1)基坑开挖过程引起地基土体变形,是导致基坑拉剪破坏的主要原因;对于受拉破坏区域,土钉长度设置应超过滑移面;对于剪切破坏区域,在剪开口处应设置较大的缆密。(2)开挖后,沿电缆轴向应力分布不同,沿电缆轴向应力最大的位置可以指示潜在滑移面的位置。FLAC3D能够合理地模拟基坑开挖和加固过程,其结果对设计和施工具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sample of Stochastic Simulation of an Automatic Teller Machine Multiresolution Animated Models Generation Based on Deformation Distance Analysis Study on Technique of 3D Imaging-Based DEM and Massive Orthograph Airspace Capacity Management Based on Control Workload and Coupling Constraints between Airspaces Self-adaptive Wheel-side Independent Driving System with Active Suspension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1