Designing an Adaptive Controller for 3D Overhead Cranes Using Hierarchical Sliding Mode and Neural Network

Le Viet Anh, Lê Xuân Hải, Vu Duc Thuan, Pham Van Trieu, L. Tuan, Hoang Manh Cuong
{"title":"Designing an Adaptive Controller for 3D Overhead Cranes Using Hierarchical Sliding Mode and Neural Network","authors":"Le Viet Anh, Lê Xuân Hải, Vu Duc Thuan, Pham Van Trieu, L. Tuan, Hoang Manh Cuong","doi":"10.1109/ICSSE.2018.8520162","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive control system for uncertain overhead cranes on the basis of hierarchical sliding mode approach combined with radial basis function (RBF) neural network. A sliding surface is defined by linearly combining two sub-manifolds. A RBF neural network is adopted to approximate the unknown dynamic model. The control law is designed to ensure the stability of sliding surfaces while an adaptation mechanism for updating weight matrices of neural network is derived from a candidate of Lyapunov function. Simulation results show the effectiveness of the proposed control scheme.","PeriodicalId":431387,"journal":{"name":"2018 International Conference on System Science and Engineering (ICSSE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2018.8520162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper proposes an adaptive control system for uncertain overhead cranes on the basis of hierarchical sliding mode approach combined with radial basis function (RBF) neural network. A sliding surface is defined by linearly combining two sub-manifolds. A RBF neural network is adopted to approximate the unknown dynamic model. The control law is designed to ensure the stability of sliding surfaces while an adaptation mechanism for updating weight matrices of neural network is derived from a candidate of Lyapunov function. Simulation results show the effectiveness of the proposed control scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层次滑模和神经网络的三维桥式起重机自适应控制器设计
提出了一种基于分层滑模方法和径向基函数(RBF)神经网络相结合的不确定高架自适应控制系统。通过线性组合两个子流形来定义滑动曲面。采用RBF神经网络对未知动态模型进行逼近。设计了保证滑动面稳定性的控制律,并利用候选Lyapunov函数推导了神经网络权矩阵更新的自适应机制。仿真结果表明了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Fuzzy Risk Assessment Strategy Based on Big Data for Multinational Financial Markets Evaluation of Indoor Positioning Based on iBeacon and Pi-Beacon A Mechanism for Adjustable-Delay-Buffer Selection to Dynamically Control Clock Skew A Mixed Reality System to Improve Walking Experience Intelligent Mobile Robot Controller Design for Hotel Room Service with Deep Learning Arm-Based Elevator Manipulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1