Corpus Design of Chinese Medicine English Vocabulary Translation Teaching System Based on Python

Chongya Liu
{"title":"Corpus Design of Chinese Medicine English Vocabulary Translation Teaching System Based on Python","authors":"Chongya Liu","doi":"10.1142/s0219649222400226","DOIUrl":null,"url":null,"abstract":"The current corpus has the problem of imperfect span retrieval function, which leads to a large classification noise. This paper designs a Python-based corpus of Chinese medicine English vocabulary translation teaching system. Here, we select the script material of web crawler, extract topic tags in the form of tag window, calculate the amount of information carried by words, use Python to extract the characteristics of Chinese medicine English vocabulary, and according to the observation value of exploration strategy, use instant time difference learning algorithm to construct the translation mode of teaching system, limit the scope of key words, and design the cross-range retrieval function of corpus. Experimental results: the average classification noise of the designed corpus and the other two corpora is 25.007[Formula: see text]dB, 33.877[Formula: see text]dB and 32.166[Formula: see text]dB, which proves that the integrated Python corpus has higher comprehensive value.","PeriodicalId":127309,"journal":{"name":"J. Inf. Knowl. Manag.","volume":"153 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Knowl. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219649222400226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The current corpus has the problem of imperfect span retrieval function, which leads to a large classification noise. This paper designs a Python-based corpus of Chinese medicine English vocabulary translation teaching system. Here, we select the script material of web crawler, extract topic tags in the form of tag window, calculate the amount of information carried by words, use Python to extract the characteristics of Chinese medicine English vocabulary, and according to the observation value of exploration strategy, use instant time difference learning algorithm to construct the translation mode of teaching system, limit the scope of key words, and design the cross-range retrieval function of corpus. Experimental results: the average classification noise of the designed corpus and the other two corpora is 25.007[Formula: see text]dB, 33.877[Formula: see text]dB and 32.166[Formula: see text]dB, which proves that the integrated Python corpus has higher comprehensive value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Python的中医英语词汇翻译教学系统语料库设计
目前的语料库存在着跨度检索功能不完善的问题,导致分类噪声较大。本文设计了一个基于python语料库的中医英语词汇翻译教学系统。在这里,我们选择网络爬虫的脚本素材,以标签窗口的形式提取主题标签,计算单词携带的信息量,使用Python提取中医英语词汇的特征,并根据探索策略的观察值,使用即时时间差学习算法构建教学系统的翻译模式,限制关键词的范围,设计语料库的跨范围检索功能。实验结果:设计的语料库与其他两个语料库的平均分类噪声分别为25.007[公式:见文]dB、33.877[公式:见文]dB和32.166[公式:见文]dB,证明了集成后的Python语料库具有更高的综合价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Management in Higher Education in Vietnam: Insights from Higher Education Leaders - An Exploratory Study The Organisation's Size-Innovation Performance Relationship: The Role of Human Resource Development Mechanisms A Comparative Review of Sentimental Analysis Using Machine Learning and Deep Learning Approaches Vocational Education Information Technology Based on Cross-Attention Fusion Knowledge Map Recommendation Algorithm Redesigning Knowledge Management Through Corporate Sustainability Strategy in the Post-Pandemic Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1