Using SVM for Efficient Detection of Human Motion

J. Grahn, H. Kjellstromg
{"title":"Using SVM for Efficient Detection of Human Motion","authors":"J. Grahn, H. Kjellstromg","doi":"10.1109/VSPETS.2005.1570920","DOIUrl":null,"url":null,"abstract":"This paper presents a method for detection of humans in video. Detection is here formulated as the problem of classifying the image patterns in a range of windows of different size in a video frame as \"human\" or \"non-human\". Computational efficiency is of core importance, which leads us to utilize fast methods for image preprocessing and classification. Linear spatio-temporal difference filters are used to represent motion information in the image. Patterns of spatio-temporal pixel difference is classified using SVM, a classification method proven efficient for problems with high dimensionality and highly non-linear feature spaces. Furthermore, a cascade architecture is employed, to make use of the fact that most windows are easy to classify, while a few are difficult. The detection method shows promising results when tested on images from street scenes with humans of varying sizes and clothing.","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a method for detection of humans in video. Detection is here formulated as the problem of classifying the image patterns in a range of windows of different size in a video frame as "human" or "non-human". Computational efficiency is of core importance, which leads us to utilize fast methods for image preprocessing and classification. Linear spatio-temporal difference filters are used to represent motion information in the image. Patterns of spatio-temporal pixel difference is classified using SVM, a classification method proven efficient for problems with high dimensionality and highly non-linear feature spaces. Furthermore, a cascade architecture is employed, to make use of the fact that most windows are easy to classify, while a few are difficult. The detection method shows promising results when tested on images from street scenes with humans of varying sizes and clothing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的人体运动检测
本文提出了一种视频中人物的检测方法。在这里,检测被表述为将视频帧中不同大小窗口中的图像模式分类为“人类”或“非人类”的问题。计算效率是最重要的,这使得我们使用快速的方法进行图像预处理和分类。使用线性时空差分滤波器来表示图像中的运动信息。利用支持向量机(SVM)对时空像元差异模式进行分类,该方法在高维、高度非线性的特征空间中被证明是有效的。此外,采用了级联架构,以利用大多数窗口易于分类而少数窗口难以分类的事实。当对街道场景中不同身材和服装的人的图像进行测试时,这种检测方法显示出了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On calibrating a camera network using parabolic trajectories of a bouncing ball Vehicle Class Recognition from Video-Based on 3D Curve Probes A Comparison of Active-Contour Models Based on Blurring and on Marginalization Validation of blind region learning and tracking Object tracking with dynamic feature graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1