{"title":"A Riemann–von Mangoldt-Type Formula for the Distribution of Beurling Primes","authors":"S. R'ev'esz","doi":"10.1556/314.2021.00019","DOIUrl":null,"url":null,"abstract":"In this paper we work out a Riemann–von Mangoldt type formula for the summatory function := , where is an arithmetical semigroup (a Beurling generalized system of integers) and is the corresponding von Mangoldt function attaining with a prime element and zero otherwise. On the way towards this formula, we prove explicit estimates on the Beurling zeta function , belonging to , to the number of zeroes of in various regions, in particular within the critical strip where the analytic continuation exists, and to the magnitude of the logarithmic derivative of , under the sole additional assumption that Knopfmacher’s Axiom A is satisfied. We also construct a technically useful broken line contour to which the technic of integral transformation can be well applied. The whole work serves as a first step towards a further study of the distribution of zeros of the Beurling zeta function, providing appropriate zero density and zero clustering estimates, to be presented in the continuation of this paper.","PeriodicalId":383314,"journal":{"name":"Mathematica Pannonica","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Pannonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/314.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper we work out a Riemann–von Mangoldt type formula for the summatory function := , where is an arithmetical semigroup (a Beurling generalized system of integers) and is the corresponding von Mangoldt function attaining with a prime element and zero otherwise. On the way towards this formula, we prove explicit estimates on the Beurling zeta function , belonging to , to the number of zeroes of in various regions, in particular within the critical strip where the analytic continuation exists, and to the magnitude of the logarithmic derivative of , under the sole additional assumption that Knopfmacher’s Axiom A is satisfied. We also construct a technically useful broken line contour to which the technic of integral transformation can be well applied. The whole work serves as a first step towards a further study of the distribution of zeros of the Beurling zeta function, providing appropriate zero density and zero clustering estimates, to be presented in the continuation of this paper.