Error Floor Compensation for LDPC Codes Using Concatenated Schemes

G. Spourlis, I. Tsatsaragkos, N. Kanistras, Vassilis Paliouras
{"title":"Error Floor Compensation for LDPC Codes Using Concatenated Schemes","authors":"G. Spourlis, I. Tsatsaragkos, N. Kanistras, Vassilis Paliouras","doi":"10.1109/SiPS.2012.38","DOIUrl":null,"url":null,"abstract":"This paper quantitatively investigates the trade-offs in the compensation of error floor on iterative decoders. The characterization of iterative decoding systems prone to error floor at low noise is a great challenge as techniques based on software simulation are inadequate due to the extremely long simulation time required. We compare the BER performance as measured at very low BER using hardware accelerators and study the cost of compensation techniques in terms of hardware complexity and throughput. Specifically, techniques based on the use of diversity in LDPC decoders and the use of concatenated BCH-LDPC codes are considered and corresponding hardware optimizations are discussed. It is shown that an introduced synergy of error-floor compensation techniques achieves substantial coding gain up to 1 dB at low noise, not possible by conventional LDPC or BCH decoders. In addition, hardware reductions are achieved in the BCH subsystem, due to simple post-processing in the LDPC decoder.","PeriodicalId":286060,"journal":{"name":"2012 IEEE Workshop on Signal Processing Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Workshop on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2012.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper quantitatively investigates the trade-offs in the compensation of error floor on iterative decoders. The characterization of iterative decoding systems prone to error floor at low noise is a great challenge as techniques based on software simulation are inadequate due to the extremely long simulation time required. We compare the BER performance as measured at very low BER using hardware accelerators and study the cost of compensation techniques in terms of hardware complexity and throughput. Specifically, techniques based on the use of diversity in LDPC decoders and the use of concatenated BCH-LDPC codes are considered and corresponding hardware optimizations are discussed. It is shown that an introduced synergy of error-floor compensation techniques achieves substantial coding gain up to 1 dB at low noise, not possible by conventional LDPC or BCH decoders. In addition, hardware reductions are achieved in the BCH subsystem, due to simple post-processing in the LDPC decoder.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LDPC码的串接误差层补偿
本文定量地研究了迭代解码器误差层补偿中的权衡问题。低噪声下易出现误差底的迭代译码系统的表征是一个巨大的挑战,因为基于软件仿真的技术由于需要非常长的仿真时间而不足。我们比较了在非常低的误码率下使用硬件加速器测量的误码率性能,并从硬件复杂性和吞吐量方面研究了补偿技术的成本。具体来说,考虑了基于LDPC解码器中使用分集的技术和使用串联BCH-LDPC码的技术,并讨论了相应的硬件优化。结果表明,引入的误差层补偿技术的协同作用在低噪声下实现了高达1 dB的编码增益,这是传统LDPC或BCH解码器无法实现的。此外,由于LDPC解码器的简单后处理,在BCH子系统中实现了硬件减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of Multi-sensor Images Based on PCA and Self-Adaptive Regional Variance Estimation Frequency Shift Detection of Speech with GMMs AND SVMs Noise-Resistant Mobile Positioning System Based on Code-Aided RSS Estimation Speech/Audio Signal Classification Using Spectral Flux Pattern Recognition Error Floor Compensation for LDPC Codes Using Concatenated Schemes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1