{"title":"Foundation of Neuro-Fuzzy Systems and an Engineering Application","authors":"Hongxing Li, C. L. P. Chen, Han-Pang Huang","doi":"10.1201/9781420057997.CH14","DOIUrl":null,"url":null,"abstract":"This chapter discusses the foundation of neuro-fuzzy systems. First, we introduce Takagi, Sugeno, and Kang (TSK) fuzzy model [l,2] and its difference from the Mamdani model. Under the idea of TSK fuzzy model, we discuss a neuro-fuzzy system architecture: Adaptive Network-based Fuzzy Inference System (ANFIS) that is developed by Jang [3]. This model allows the fuzzy systems to learn the parameters adaptively. By using a hybrid learning algorithm, the ANFIS can construct an input-output mapping based on both human knowledge and numerical data. Finally, the ANFIS architecture is employed for an engineering example an IC fabrication time estimation. The result is compared with other different algorithms: Gauss-Newton-based Levenberg-Marquardt algorithm (GN algorithm), and backpropagation of neural network (BPNN) algorithm. Comparing these two methods, the ANFIS algorithm gives the most accurate prediction result at the expense of the highest computation cost. Besides, the adaptation of fuzzy inference system provides more physical insights for engineers to understand the relationship between the parameters.","PeriodicalId":239984,"journal":{"name":"Fuzzy Neural Intelligent Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Neural Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781420057997.CH14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This chapter discusses the foundation of neuro-fuzzy systems. First, we introduce Takagi, Sugeno, and Kang (TSK) fuzzy model [l,2] and its difference from the Mamdani model. Under the idea of TSK fuzzy model, we discuss a neuro-fuzzy system architecture: Adaptive Network-based Fuzzy Inference System (ANFIS) that is developed by Jang [3]. This model allows the fuzzy systems to learn the parameters adaptively. By using a hybrid learning algorithm, the ANFIS can construct an input-output mapping based on both human knowledge and numerical data. Finally, the ANFIS architecture is employed for an engineering example an IC fabrication time estimation. The result is compared with other different algorithms: Gauss-Newton-based Levenberg-Marquardt algorithm (GN algorithm), and backpropagation of neural network (BPNN) algorithm. Comparing these two methods, the ANFIS algorithm gives the most accurate prediction result at the expense of the highest computation cost. Besides, the adaptation of fuzzy inference system provides more physical insights for engineers to understand the relationship between the parameters.
本章讨论神经模糊系统的基础。首先,我们介绍Takagi, Sugeno, and Kang (TSK)模糊模型[1,2]及其与Mamdani模型的区别。在TSK模糊模型的思想下,我们讨论了一种神经模糊系统架构:Jang[3]开发的自适应网络模糊推理系统(Adaptive Network-based fuzzy Inference system, ANFIS)。该模型允许模糊系统自适应学习参数。通过混合学习算法,ANFIS可以构建基于人类知识和数值数据的输入输出映射。最后,将ANFIS体系结构应用于集成电路制造时间估计的工程实例。结果与其他不同的算法:基于高斯-牛顿的Levenberg-Marquardt算法(GN算法)和神经网络反向传播(BPNN)算法进行比较。对比两种方法,ANFIS算法以最高的计算代价给出了最准确的预测结果。此外,模糊推理系统的自适应为工程师理解参数之间的关系提供了更多的物理视角。