Inductive sorting-out GMDH algorithms with polynomial complexity for active neurons of neural network

A. Ivakhnenko, D. Wunsch, G. A. Ivakhnenko
{"title":"Inductive sorting-out GMDH algorithms with polynomial complexity for active neurons of neural network","authors":"A. Ivakhnenko, D. Wunsch, G. A. Ivakhnenko","doi":"10.1109/IJCNN.1999.831124","DOIUrl":null,"url":null,"abstract":"Neural networks with active neurons which self-organize their structure can use inductive sorting-out GMDH algorithms for their neurons. New threshold type GMDH algorithm with polynomial complexity is developed to decrease computing time in case of large input data sample.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.831124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Neural networks with active neurons which self-organize their structure can use inductive sorting-out GMDH algorithms for their neurons. New threshold type GMDH algorithm with polynomial complexity is developed to decrease computing time in case of large input data sample.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络活动神经元的多项式复杂度GMDH归纳整理算法
具有自组织结构的活动神经元的神经网络可以对其神经元使用归纳分选GMDH算法。为了减少大输入数据样本情况下的计算时间,提出了一种多项式复杂度的阈值型GMDH算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1