Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, F. Kerschbaum
{"title":"On the Robustness of Backdoor-based Watermarking in Deep Neural Networks","authors":"Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, F. Kerschbaum","doi":"10.1145/3437880.3460401","DOIUrl":null,"url":null,"abstract":"Watermarking algorithms have been introduced in the past years to protect deep learning models against unauthorized re-distribution. We investigate the robustness and reliability of state-of-the-art deep neural network watermarking schemes. We focus on backdoor-based watermarking and propose two simple yet effective attacks -- a black-box and a white-box -- that remove these watermarks without any labeled data from the ground truth. Our black-box attack steals the model and removes the watermark with only API access to the labels. Our white-box attack proposes an efficient watermark removal when the parameters of the marked model are accessible, and improves the time to steal a model up to twenty times over the time to train a model from scratch. We conclude that these watermarking algorithms are insufficient to defend against redistribution by a motivated attacker.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74
Abstract
Watermarking algorithms have been introduced in the past years to protect deep learning models against unauthorized re-distribution. We investigate the robustness and reliability of state-of-the-art deep neural network watermarking schemes. We focus on backdoor-based watermarking and propose two simple yet effective attacks -- a black-box and a white-box -- that remove these watermarks without any labeled data from the ground truth. Our black-box attack steals the model and removes the watermark with only API access to the labels. Our white-box attack proposes an efficient watermark removal when the parameters of the marked model are accessible, and improves the time to steal a model up to twenty times over the time to train a model from scratch. We conclude that these watermarking algorithms are insufficient to defend against redistribution by a motivated attacker.