Relaxed stabilization conditions of T-S fuzzy systems using piecewise lyapunov function based switching fuzzy controller

Ying-Jen Chen, H. Ohtake, Kazuo Tanaka, Wen-June Wang, Hua O. Wang
{"title":"Relaxed stabilization conditions of T-S fuzzy systems using piecewise lyapunov function based switching fuzzy controller","authors":"Ying-Jen Chen, H. Ohtake, Kazuo Tanaka, Wen-June Wang, Hua O. Wang","doi":"10.1109/FUZZY.2009.5277097","DOIUrl":null,"url":null,"abstract":"Based on the piecewise Lyapunov function, this study proposes a switching fuzzy controller, which switches depending on the Lyapunov function, to get relaxed stabilization conditions for the continuous T-S fuzzy system. The relaxed conditions are bilinear with the s-procedure parameters, therefore the particle swarm optimization (PSO) algorithm is utilized with the LMI tool to solve the relaxed conditions. Two simulation examples are given to show the relaxation and effectiveness of the proposed method.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Based on the piecewise Lyapunov function, this study proposes a switching fuzzy controller, which switches depending on the Lyapunov function, to get relaxed stabilization conditions for the continuous T-S fuzzy system. The relaxed conditions are bilinear with the s-procedure parameters, therefore the particle swarm optimization (PSO) algorithm is utilized with the LMI tool to solve the relaxed conditions. Two simulation examples are given to show the relaxation and effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分段李雅普诺夫函数的切换模糊控制器的T-S模糊系统松弛镇定条件
基于分段Lyapunov函数,本文提出了一种切换模糊控制器,该控制器根据Lyapunov函数进行切换,以获得连续T-S模糊系统的松弛镇定条件。放宽条件与s过程参数呈双线性关系,因此采用粒子群优化(PSO)算法结合LMI工具求解放宽条件。仿真结果表明了该方法的有效性和弛豫性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of a hybrid controller for a multi-input multi-output magnetic suspension system Fuzzy CMAC structures Hybrid SVM-GPs learning for modeling of molecular autoregulatory feedback loop systems with outliers On-line adaptive T-S fuzzy neural control for active suspension systems Analyzing KANSEI from facial expressions with fuzzy quantification theory II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1