{"title":"Satellite and drone multispectral and thermal images data fusion for intelligent agriculture monitoring and decision making support","authors":"Miroslav Y. Tsvetkov","doi":"10.1117/12.2679922","DOIUrl":null,"url":null,"abstract":"Intelligent agriculture increasingly relies on modern technologies for reliable monitoring of crops and timely detection of areas in which special intervention is needed to ensure the planned yields. This paper represents the results of a study of the possibilities of fusion and processing of multi-spectral and thermal data from satellite systems and such from remotely controlled platforms (drones) for the decision making support in intelligent agriculture. The study examined images with different resolutions, such as from the Sentinel-2, Landsat and Planet Labs satellite systems, as well as multi-spectral images from the commercial drones DJI Phantom 4 Multispectral and thermal images (thermograms) from the DJI Mavic 2 Enterprise Advanced.","PeriodicalId":222517,"journal":{"name":"Remote Sensing for Agriculture, Ecosystems, and Hydrology XXV","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing for Agriculture, Ecosystems, and Hydrology XXV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2679922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent agriculture increasingly relies on modern technologies for reliable monitoring of crops and timely detection of areas in which special intervention is needed to ensure the planned yields. This paper represents the results of a study of the possibilities of fusion and processing of multi-spectral and thermal data from satellite systems and such from remotely controlled platforms (drones) for the decision making support in intelligent agriculture. The study examined images with different resolutions, such as from the Sentinel-2, Landsat and Planet Labs satellite systems, as well as multi-spectral images from the commercial drones DJI Phantom 4 Multispectral and thermal images (thermograms) from the DJI Mavic 2 Enterprise Advanced.