GramsDet: Hardware Trojan Detection Based on Recurrent Neural Network

Renjie Lu, Haihua Shen, Yu Su, Huawei Li, Xiaowei Li
{"title":"GramsDet: Hardware Trojan Detection Based on Recurrent Neural Network","authors":"Renjie Lu, Haihua Shen, Yu Su, Huawei Li, Xiaowei Li","doi":"10.1109/ATS47505.2019.00021","DOIUrl":null,"url":null,"abstract":"Hardware Trojan (HT) has paid more and more attention to the academia and industry because of its significant potential threat. In this paper, we propose a novel approach, named GramsDet, to detect HT through capturing suspicious circuit connection structure using recurrent neural network. GramsDet considers that HT usually be inserted into the regions with low transition probability, so the circuit fragments associated with HT should have special connection structures. GramsDet models the target circuit using n-gram circuit segmentation technique, and implements the \"gate embedding\" by the order-sensitive co-occurrence matrix. Then, a stacked long short-term memory network is designed to build a robust HT detection model. The experimental results on different benchmarks show that GramsDet can detect effectively Trojan logic without the \"Golden model\" of the circuit under detection (CUD).","PeriodicalId":258824,"journal":{"name":"2019 IEEE 28th Asian Test Symposium (ATS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS47505.2019.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Hardware Trojan (HT) has paid more and more attention to the academia and industry because of its significant potential threat. In this paper, we propose a novel approach, named GramsDet, to detect HT through capturing suspicious circuit connection structure using recurrent neural network. GramsDet considers that HT usually be inserted into the regions with low transition probability, so the circuit fragments associated with HT should have special connection structures. GramsDet models the target circuit using n-gram circuit segmentation technique, and implements the "gate embedding" by the order-sensitive co-occurrence matrix. Then, a stacked long short-term memory network is designed to build a robust HT detection model. The experimental results on different benchmarks show that GramsDet can detect effectively Trojan logic without the "Golden model" of the circuit under detection (CUD).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于递归神经网络的硬件木马检测
硬件木马(Hardware Trojan, HT)由于其巨大的潜在威胁而越来越受到学术界和工业界的重视。在本文中,我们提出了一种名为GramsDet的新方法,通过使用递归神经网络捕获可疑的电路连接结构来检测HT。GramsDet认为HT通常被插入到转移概率较低的区域,因此与HT相关的电路片段应该具有特殊的连接结构。GramsDet采用n图电路分割技术对目标电路进行建模,并通过顺序敏感共现矩阵实现“门嵌入”。在此基础上,设计了堆叠长短期记忆网络,建立了鲁棒的HT检测模型。不同基准测试的实验结果表明,GramsDet可以有效地检测木马逻辑,而不需要被检测电路的“黄金模型”(CUD)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iterative Parallel Test to Detect and Diagnose Multiple Defects for Digital Microfluidic Biochip Recruiting Fault Tolerance Techniques for Microprocessor Security Can Monitoring System State + Counting Custom Instruction Sequences Aid Malware Detection? Design of a Sextuple Cross-Coupled SRAM Cell with Optimized Access Operations for Highly Reliable Terrestrial Applications ATS 2019 Sponsors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1