Wen-ting Zhang, Luofeng Geng, Duoli Zhang, Gaoming Du, Minglun Gao, Wei Zhang, Ning Hou, Yi-Hua Tang
{"title":"Design of heterogeneous MPSoC on FPGA","authors":"Wen-ting Zhang, Luofeng Geng, Duoli Zhang, Gaoming Du, Minglun Gao, Wei Zhang, Ning Hou, Yi-Hua Tang","doi":"10.1109/ICASIC.2007.4415577","DOIUrl":null,"url":null,"abstract":"To achieve a balance between high performance and energy efficiency, embedded systems often use heterogeneous multiprocessor platforms which tuned for a well defined application domain. Meanwhile FPGA is known for providing designers with several benefits in system design. One most important is high programmability and low risks. In this paper we demonstrate the design of an FPGA-based heterogeneous multiprocessor system integrating 4 Nios II soft cores and 1 ARM core. ARM core is the central controller of the whole system, and 4 Nios II cores are served as slaves, which are commanded by ARM core and responsible for processing regular and quantity data. ARM core and Nios II cores cooperate and work in parallel to accomplish each task. FPGA utilization of current implementation is 13% requiring 19,593 ALUTs on Altera Stratix II EP2S180.","PeriodicalId":120984,"journal":{"name":"2007 7th International Conference on ASIC","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASIC.2007.4415577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
To achieve a balance between high performance and energy efficiency, embedded systems often use heterogeneous multiprocessor platforms which tuned for a well defined application domain. Meanwhile FPGA is known for providing designers with several benefits in system design. One most important is high programmability and low risks. In this paper we demonstrate the design of an FPGA-based heterogeneous multiprocessor system integrating 4 Nios II soft cores and 1 ARM core. ARM core is the central controller of the whole system, and 4 Nios II cores are served as slaves, which are commanded by ARM core and responsible for processing regular and quantity data. ARM core and Nios II cores cooperate and work in parallel to accomplish each task. FPGA utilization of current implementation is 13% requiring 19,593 ALUTs on Altera Stratix II EP2S180.