LayerDoc: Layer-wise Extraction of Spatial Hierarchical Structure in Visually-Rich Documents

Puneet Mathur, R. Jain, Ashutosh Mehra, Jiuxiang Gu, Franck Dernoncourt, Anandhavelu N, Quan Hung Tran, Verena Kaynig-Fittkau, A. Nenkova, Dinesh Manocha, Vlad I. Morariu
{"title":"LayerDoc: Layer-wise Extraction of Spatial Hierarchical Structure in Visually-Rich Documents","authors":"Puneet Mathur, R. Jain, Ashutosh Mehra, Jiuxiang Gu, Franck Dernoncourt, Anandhavelu N, Quan Hung Tran, Verena Kaynig-Fittkau, A. Nenkova, Dinesh Manocha, Vlad I. Morariu","doi":"10.1109/WACV56688.2023.00360","DOIUrl":null,"url":null,"abstract":"Digital documents often contain images and scanned text. Parsing such visually-rich documents is a core task for work-flow automation, but it remains challenging since most documents do not encode explicit layout information, e.g., how characters and words are grouped into boxes and ordered into larger semantic entities. Current state-of-the-art layout extraction methods are challenged by such documents as they rely on word sequences to have correct reading order and do not exploit their hierarchical structure. We propose LayerDoc, an approach that uses visual features, textual semantics, and spatial coordinates along with constraint inference to extract the hierarchical layout structure of documents in a bottom-up layer-wise fashion. LayerDoc recursively groups smaller regions into larger semantic elements in 2D to infer complex nested hierarchies. Experiments show that our approach outperforms competitive baselines by 10-15% on three diverse datasets of forms and mobile app screen layouts for the tasks of spatial region classification, higher-order group identification, layout hierarchy extraction, reading order detection, and word grouping.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Digital documents often contain images and scanned text. Parsing such visually-rich documents is a core task for work-flow automation, but it remains challenging since most documents do not encode explicit layout information, e.g., how characters and words are grouped into boxes and ordered into larger semantic entities. Current state-of-the-art layout extraction methods are challenged by such documents as they rely on word sequences to have correct reading order and do not exploit their hierarchical structure. We propose LayerDoc, an approach that uses visual features, textual semantics, and spatial coordinates along with constraint inference to extract the hierarchical layout structure of documents in a bottom-up layer-wise fashion. LayerDoc recursively groups smaller regions into larger semantic elements in 2D to infer complex nested hierarchies. Experiments show that our approach outperforms competitive baselines by 10-15% on three diverse datasets of forms and mobile app screen layouts for the tasks of spatial region classification, higher-order group identification, layout hierarchy extraction, reading order detection, and word grouping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LayerDoc:在视觉丰富的文档中逐层提取空间层次结构
数字文档通常包含图像和扫描文本。解析这种视觉丰富的文档是工作流自动化的核心任务,但它仍然具有挑战性,因为大多数文档没有编码明确的布局信息,例如,如何将字符和单词分组到框中,并将其排序为更大的语义实体。当前最先进的版式提取方法受到这类文档的挑战,因为它们依赖于单词序列来获得正确的阅读顺序,而没有利用它们的层次结构。我们提出LayerDoc,这是一种使用视觉特征、文本语义和空间坐标以及约束推理的方法,以自下而上的分层方式提取文档的分层布局结构。LayerDoc递归地将较小的区域分组为2D中的较大语义元素,以推断复杂的嵌套层次结构。实验表明,在表单和移动应用屏幕布局的三种不同数据集上,我们的方法在空间区域分类、高阶组识别、布局层次提取、阅读顺序检测和单词分组等任务上优于竞争基准10-15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aggregating Bilateral Attention for Few-Shot Instance Localization Burst Reflection Removal using Reflection Motion Aggregation Cues Complementary Cues from Audio Help Combat Noise in Weakly-Supervised Object Detection Efficient Skeleton-Based Action Recognition via Joint-Mapping strategies Few-shot Object Detection via Improved Classification Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1