F. J. Moreno-Velo, I. Baturone, R. Senhadji, S. Sánchez-Solano
{"title":"Tuning complex fuzzy systems by supervised learning algorithms","authors":"F. J. Moreno-Velo, I. Baturone, R. Senhadji, S. Sánchez-Solano","doi":"10.1109/FUZZ.2003.1209366","DOIUrl":null,"url":null,"abstract":"Tuning a fuzzy system to meet a given set of input/output patterns is usually a difficult task that involves many parameters. This paper presents an study of different approaches that can be applied to perform this tuning process automatically, and describes a CAD tool, named xfsl, which allows applying a wide set of these approaches: (a) a large number of supervised learning algorithms; (b) different processes to simplify the learned system; (c) tuning only specific parameters of the system; (d) the ability to tune hierarchical fuzzy systems, systems with continuous output (like fuzzy controller) as well as with categorical output (like fuzzy classifiers), and even systems that employ user-defined fuzzy functions; and, finally, (e) the ability to employ this tuning within the design flow of a fuzzy system, because xfsl is integrated into the fuzzy system development environment Xfuzzy 3.0.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1209366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Tuning a fuzzy system to meet a given set of input/output patterns is usually a difficult task that involves many parameters. This paper presents an study of different approaches that can be applied to perform this tuning process automatically, and describes a CAD tool, named xfsl, which allows applying a wide set of these approaches: (a) a large number of supervised learning algorithms; (b) different processes to simplify the learned system; (c) tuning only specific parameters of the system; (d) the ability to tune hierarchical fuzzy systems, systems with continuous output (like fuzzy controller) as well as with categorical output (like fuzzy classifiers), and even systems that employ user-defined fuzzy functions; and, finally, (e) the ability to employ this tuning within the design flow of a fuzzy system, because xfsl is integrated into the fuzzy system development environment Xfuzzy 3.0.