HotGPT: How to Make Software Documentation More Useful with a Large Language Model?

Yi-An Su, Chengcheng Wan, Utsav Sethi, Shan Lu, M. Musuvathi, Suman Nath
{"title":"HotGPT: How to Make Software Documentation More Useful with a Large Language Model?","authors":"Yi-An Su, Chengcheng Wan, Utsav Sethi, Shan Lu, M. Musuvathi, Suman Nath","doi":"10.1145/3593856.3595910","DOIUrl":null,"url":null,"abstract":"It is well known that valuable information is contained in the natural language components of software systems, like comments and manual, and such information can be used to improve system performance and reliability. Past research has attempted to extract such information through task-specific machine learning models and tool chains. Here, we investigate a general, one-model-fit-all solution through a state-of-the-art large language model (e.g., the GPT series). Our investigation covers three representative tasks: extracting locking rules from comments, synthesizing exception predicates from comments, and identifying performance-related configurations; it reveals challenges and opportunities in applying large language models to system maintenance tasks.","PeriodicalId":330470,"journal":{"name":"Proceedings of the 19th Workshop on Hot Topics in Operating Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Workshop on Hot Topics in Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3593856.3595910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

It is well known that valuable information is contained in the natural language components of software systems, like comments and manual, and such information can be used to improve system performance and reliability. Past research has attempted to extract such information through task-specific machine learning models and tool chains. Here, we investigate a general, one-model-fit-all solution through a state-of-the-art large language model (e.g., the GPT series). Our investigation covers three representative tasks: extracting locking rules from comments, synthesizing exception predicates from comments, and identifying performance-related configurations; it reveals challenges and opportunities in applying large language models to system maintenance tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
hotpt:如何在大型语言模型下使软件文档更有用?
众所周知,有价值的信息包含在软件系统的自然语言组件中,比如注释和手册,这些信息可以用来提高系统的性能和可靠性。过去的研究试图通过特定任务的机器学习模型和工具链来提取这些信息。在这里,我们通过最先进的大型语言模型(例如,GPT系列)研究一个通用的、一个模型适合所有人的解决方案。我们的调查涵盖了三个代表性的任务:从注释中提取锁定规则,从注释中合成异常谓词,以及识别与性能相关的配置;它揭示了将大型语言模型应用于系统维护任务的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabric-Centric Computing FBMM: Using the VFS for Extensibility in Kernel Memory Management Evolving Operating System Kernels Towards Secure Kernel-Driver Interfaces Prefetching Using Principles of Hippocampal-Neocortical Interaction HotGPT: How to Make Software Documentation More Useful with a Large Language Model?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1