UnchartIt

Daniel Ramos, J. Pereira, I. Lynce, Vasco M. Manquinho, R. Martins
{"title":"UnchartIt","authors":"Daniel Ramos, J. Pereira, I. Lynce, Vasco M. Manquinho, R. Martins","doi":"10.1145/3324884.3416613","DOIUrl":null,"url":null,"abstract":"Charts are commonly used for data visualization. Generating a chart usually involves performing data transformations, including data pre-processing and aggregation. These tasks can be cumbersome and time-consuming, even for experienced data scientists. Reproducing existing charts can also be a challenging task when information about data transformations is no longer available. In this paper, we tackle the problem of recovering data transformations from existing charts. Given an input table and a chart, our goal is to automatically recover the data transformation program underlying the chart. We divide our approach into four steps: (1) data extraction, (2) candidate generation, (3) candidate ranking, and (4) candidate disambiguation. We implemented our approach in a tool called UNCHARTIT and evaluated it on a set of 50 benchmarks from Kaggle. Experimental results show that UNCHARTIT successfully ranks the correct data transformation among the top-10 programs in 92% of the benchmarks. To disambiguate the top-ranking programs, we use our new interactive procedure, which successfully disambiguates 98% of the ambiguous benchmarks by asking on average fewer than 2 questions to the user.","PeriodicalId":267160,"journal":{"name":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3416613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Charts are commonly used for data visualization. Generating a chart usually involves performing data transformations, including data pre-processing and aggregation. These tasks can be cumbersome and time-consuming, even for experienced data scientists. Reproducing existing charts can also be a challenging task when information about data transformations is no longer available. In this paper, we tackle the problem of recovering data transformations from existing charts. Given an input table and a chart, our goal is to automatically recover the data transformation program underlying the chart. We divide our approach into four steps: (1) data extraction, (2) candidate generation, (3) candidate ranking, and (4) candidate disambiguation. We implemented our approach in a tool called UNCHARTIT and evaluated it on a set of 50 benchmarks from Kaggle. Experimental results show that UNCHARTIT successfully ranks the correct data transformation among the top-10 programs in 92% of the benchmarks. To disambiguate the top-ranking programs, we use our new interactive procedure, which successfully disambiguates 98% of the ambiguous benchmarks by asking on average fewer than 2 questions to the user.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UnchartIt
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ImpAPTr PerfCI STIFA Prober SADT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1