Temporal Superpixels based Human Action Localization

Sami Ullah, Najmul Hassan, Naeem Bhatti
{"title":"Temporal Superpixels based Human Action Localization","authors":"Sami Ullah, Najmul Hassan, Naeem Bhatti","doi":"10.1109/ICET.2018.8603608","DOIUrl":null,"url":null,"abstract":"In this paper, we present human action localization in videos. It is a challenging task to localize actions performed in videos where the foreground areas containing video object as well as the background areas depict motion simultaneously. We set the main objective to identify action related spatio-temporal areas in a video. The proposed approach consists of two main steps. At first, we perform saturation (S plane of HSV space) based background subtraction to obtain foreground in video frames. Secondly, we compute the optical flow of video frames. Performing the superpixels segmentation of each video frame, we classify the superpixels as temporal or stationary using optical flow information and the extracted foreground. The collection of the classified temporal superpixels provide the required action localization in videos. We present qualitative as well as quantitative evaluation of our approach using UCF sports and Weizmann actions dataset. The visual results and quantitative performance measures show that the proposed approach well localizes the action areas in the taken action sequences for evaluation.","PeriodicalId":443353,"journal":{"name":"2018 14th International Conference on Emerging Technologies (ICET)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Emerging Technologies (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2018.8603608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present human action localization in videos. It is a challenging task to localize actions performed in videos where the foreground areas containing video object as well as the background areas depict motion simultaneously. We set the main objective to identify action related spatio-temporal areas in a video. The proposed approach consists of two main steps. At first, we perform saturation (S plane of HSV space) based background subtraction to obtain foreground in video frames. Secondly, we compute the optical flow of video frames. Performing the superpixels segmentation of each video frame, we classify the superpixels as temporal or stationary using optical flow information and the extracted foreground. The collection of the classified temporal superpixels provide the required action localization in videos. We present qualitative as well as quantitative evaluation of our approach using UCF sports and Weizmann actions dataset. The visual results and quantitative performance measures show that the proposed approach well localizes the action areas in the taken action sequences for evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间超像素的人类动作定位
在本文中,我们提出了视频中的人类动作定位。在包含视频对象的前景区域和背景区域同时描述运动的视频中,对动作进行定位是一项具有挑战性的任务。我们设定的主要目标是识别视频中与动作相关的时空区域。所提出的方法包括两个主要步骤。首先,我们采用基于HSV空间S平面的饱和背景相减来获得视频帧中的前景。其次,我们计算了视频帧的光流。对每个视频帧进行超像素分割,利用光流信息和提取的前景将超像素分类为时间或静止。分类时间超像素的集合提供了视频中所需的动作定位。我们使用UCF体育和Weizmann动作数据集对我们的方法进行定性和定量评估。可视化结果和定量性能测量表明,该方法可以很好地定位已采取的行动序列中的行动区域进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic Analysis of News Based on the Deep Convolution Neural Network Identification and mapping of coral reefs using Landsat 8 OLI in Astola Island, Pakistan coastal ocean Robot Localization in Indoor and Outdoor Environments by Multi-sensor Fusion Understanding Worker Mobility within the Stay Locations using HMMs on Semantic Trajectories Domain Specific Emotion Lexicon Expansion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1