Revisiting data normalization for appearance-based gaze estimation

Xucong Zhang, Yusuke Sugano, A. Bulling
{"title":"Revisiting data normalization for appearance-based gaze estimation","authors":"Xucong Zhang, Yusuke Sugano, A. Bulling","doi":"10.1145/3204493.3204548","DOIUrl":null,"url":null,"abstract":"Appearance-based gaze estimation is promising for unconstrained real-world settings, but the significant variability in head pose and user-camera distance poses significant challenges for training generic gaze estimators. Data normalization was proposed to cancel out this geometric variability by mapping input images and gaze labels to a normalized space. Although used successfully in prior works, the role and importance of data normalization remains unclear. To fill this gap, we study data normalization for the first time using principled evaluations on both simulated and real data. We propose a modification to the current data normalization formulation by removing the scaling factor and show that our new formulation performs significantly better (between 9.5% and 32.7%) in the different evaluation settings. Using images synthesized from a 3D face model, we demonstrate the benefit of data normalization for the efficiency of the model training. Experiments on real-world images confirm the advantages of data normalization in terms of gaze estimation performance.","PeriodicalId":237808,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204493.3204548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

Appearance-based gaze estimation is promising for unconstrained real-world settings, but the significant variability in head pose and user-camera distance poses significant challenges for training generic gaze estimators. Data normalization was proposed to cancel out this geometric variability by mapping input images and gaze labels to a normalized space. Although used successfully in prior works, the role and importance of data normalization remains unclear. To fill this gap, we study data normalization for the first time using principled evaluations on both simulated and real data. We propose a modification to the current data normalization formulation by removing the scaling factor and show that our new formulation performs significantly better (between 9.5% and 32.7%) in the different evaluation settings. Using images synthesized from a 3D face model, we demonstrate the benefit of data normalization for the efficiency of the model training. Experiments on real-world images confirm the advantages of data normalization in terms of gaze estimation performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视基于外观的注视估计的数据规范化
基于外观的凝视估计在无约束的现实世界中很有前途,但是头部姿势和用户-相机距离的显著变化对训练通用的凝视估计器提出了重大挑战。通过将输入图像和凝视标签映射到归一化空间,提出了数据归一化来消除这种几何变异性。虽然在以前的工作中使用成功,但数据规范化的作用和重要性仍然不清楚。为了填补这一空白,我们首次使用模拟和真实数据的原则评估来研究数据归一化。我们通过去除比例因子对当前的数据归一化公式进行了修改,并表明我们的新公式在不同的评估设置中表现得更好(在9.5%到32.7%之间)。使用从三维人脸模型合成的图像,我们证明了数据归一化对模型训练效率的好处。在真实图像上的实验证实了数据归一化在注视估计性能方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating gender difference on algorithmic problems using eye-tracker Eyemic Gaze patterns during remote presentations while listening and speaking An investigation of the effects of n-gram length in scanpath analysis for eye-tracking research Towards concise gaze sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1