A time series approach to short term load forecasting through evolutionary programming structures

Chao-Ming Huang, Hong-Tzer Yang
{"title":"A time series approach to short term load forecasting through evolutionary programming structures","authors":"Chao-Ming Huang, Hong-Tzer Yang","doi":"10.1109/EMPD.1995.500792","DOIUrl":null,"url":null,"abstract":"Multiple local minimum points often exist on the surface of forecasting error function of the time series models. Solutions of the traditional gradient search based identification technique, therefore, may stall at the local optimal points which lead to an inadequate model. By simulating natural evolutionary process, the evolutionary programming (EP) algorithm offers the capability of converging towards the global extremum of a complex error surface. The EP based load forecasting algorithm is developed to identify the autoregression moving average (ARMA) model for one week ahead hourly load demand forecasts. Numerical tests indicate the proposed EP approach provides a method to simultaneously estimate the appropriate order and parameter values of the ARMA model for diverse types of load data. Comparisons of forecasting errors are made to the traditional identification techniques used by SAS statistical commercial package.","PeriodicalId":447674,"journal":{"name":"Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPD.1995.500792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Multiple local minimum points often exist on the surface of forecasting error function of the time series models. Solutions of the traditional gradient search based identification technique, therefore, may stall at the local optimal points which lead to an inadequate model. By simulating natural evolutionary process, the evolutionary programming (EP) algorithm offers the capability of converging towards the global extremum of a complex error surface. The EP based load forecasting algorithm is developed to identify the autoregression moving average (ARMA) model for one week ahead hourly load demand forecasts. Numerical tests indicate the proposed EP approach provides a method to simultaneously estimate the appropriate order and parameter values of the ARMA model for diverse types of load data. Comparisons of forecasting errors are made to the traditional identification techniques used by SAS statistical commercial package.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于演化规划结构的短期负荷预测的时间序列方法
时间序列模型的预测误差函数表面往往存在多个局部极小点。因此,传统的基于梯度搜索的识别技术的解可能会在局部最优点处停滞,从而导致模型不充分。进化规划算法通过模拟自然进化过程,具有向复杂误差曲面的全局极值收敛的能力。提出了一种基于EP的负荷预测算法,用于确定一周前每小时负荷需求预测的自回归移动平均(ARMA)模型。数值试验表明,该方法提供了一种同时估计不同负荷类型下ARMA模型的合适阶数和参数值的方法。将预测误差与SAS统计商业软件包使用的传统识别技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer studies of high-voltage motor switching transients A study on the fault indentification of underground cable using neural networks The technical efficiency of developing country electricity systems A method for cost benefit analysis of distribution automation Statistical standards and pollution estimation of harmonics in a power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1