Marginal maximum likelihood estimation of single parameter logistic based on EM algorithm

Xueyan Sun, Fengxuan Jing, Xiaoyao Xie, Anyu Zhang
{"title":"Marginal maximum likelihood estimation of single parameter logistic based on EM algorithm","authors":"Xueyan Sun, Fengxuan Jing, Xiaoyao Xie, Anyu Zhang","doi":"10.1109/ICASID.2010.5551506","DOIUrl":null,"url":null,"abstract":"Cluster analysis is one of the most important functions of data mining. Expectation Maximization (EM) method is an important technology based on model clustering method. The expectation maximization algorithm is analyzed in this research and applied to Adaptive Testing System, in which logistic function in item response theory serves as a model, and the combination of methods of marginal maximum likelihood estimation (MMLE) and the EM algorithm are used to estimate the difficulty parameter estimation of single-parameter logistic function. This effort achieves good results.","PeriodicalId":391931,"journal":{"name":"2010 International Conference on Anti-Counterfeiting, Security and Identification","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Anti-Counterfeiting, Security and Identification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASID.2010.5551506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cluster analysis is one of the most important functions of data mining. Expectation Maximization (EM) method is an important technology based on model clustering method. The expectation maximization algorithm is analyzed in this research and applied to Adaptive Testing System, in which logistic function in item response theory serves as a model, and the combination of methods of marginal maximum likelihood estimation (MMLE) and the EM algorithm are used to estimate the difficulty parameter estimation of single-parameter logistic function. This effort achieves good results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于EM算法的单参数逻辑的边际极大似然估计
聚类分析是数据挖掘最重要的功能之一。期望最大化(EM)方法是一种基于模型聚类方法的重要技术。本研究分析了期望最大化算法,并将其应用于自适应测试系统中,以项目反应理论中的logistic函数为模型,结合边际极大似然估计(MMLE)方法和EM算法对单参数logistic函数的难度参数估计进行估计。这一努力取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-power low-noise CMOS chopper amplifier Homogeneous Markov source information entropy proof based on C-K equation A compact output stage for low-power low-distortion amplifier with diode negative feedback A comparator with flexible programming of the hysteresis Design of elder alarm system based on body posture reorganization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1