{"title":"Measurement classification using hybrid weighted Naive Bayes","authors":"David Hamblin, Dali Wang, Gao Chen","doi":"10.1109/CIVEMSA.2016.7524248","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for classifying measurement variables within airborne measurement data files collected by NASA. The proposed solution utilizes a combination of decision tree and Naive Bayes classifiers. In order to mitigate the independence assumption of Naive Bayes, we apply a weight vector to the feature set based on each feature's role in the classification process. The Analytic Hierarchy Process is selected to calculate the weight vector, after an investigation of various weight calculation techniques. The assessment of the algorithm with recent NASA data shows that the algorithm delivers robust results, and exceeds the performance expectation in the presence of inconsistencies and inaccuracies among measurement data.","PeriodicalId":244122,"journal":{"name":"2016 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"7 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2016.7524248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents an algorithm for classifying measurement variables within airborne measurement data files collected by NASA. The proposed solution utilizes a combination of decision tree and Naive Bayes classifiers. In order to mitigate the independence assumption of Naive Bayes, we apply a weight vector to the feature set based on each feature's role in the classification process. The Analytic Hierarchy Process is selected to calculate the weight vector, after an investigation of various weight calculation techniques. The assessment of the algorithm with recent NASA data shows that the algorithm delivers robust results, and exceeds the performance expectation in the presence of inconsistencies and inaccuracies among measurement data.