Measurement classification using hybrid weighted Naive Bayes

David Hamblin, Dali Wang, Gao Chen
{"title":"Measurement classification using hybrid weighted Naive Bayes","authors":"David Hamblin, Dali Wang, Gao Chen","doi":"10.1109/CIVEMSA.2016.7524248","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for classifying measurement variables within airborne measurement data files collected by NASA. The proposed solution utilizes a combination of decision tree and Naive Bayes classifiers. In order to mitigate the independence assumption of Naive Bayes, we apply a weight vector to the feature set based on each feature's role in the classification process. The Analytic Hierarchy Process is selected to calculate the weight vector, after an investigation of various weight calculation techniques. The assessment of the algorithm with recent NASA data shows that the algorithm delivers robust results, and exceeds the performance expectation in the presence of inconsistencies and inaccuracies among measurement data.","PeriodicalId":244122,"journal":{"name":"2016 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"7 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2016.7524248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an algorithm for classifying measurement variables within airborne measurement data files collected by NASA. The proposed solution utilizes a combination of decision tree and Naive Bayes classifiers. In order to mitigate the independence assumption of Naive Bayes, we apply a weight vector to the feature set based on each feature's role in the classification process. The Analytic Hierarchy Process is selected to calculate the weight vector, after an investigation of various weight calculation techniques. The assessment of the algorithm with recent NASA data shows that the algorithm delivers robust results, and exceeds the performance expectation in the presence of inconsistencies and inaccuracies among measurement data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合加权朴素贝叶斯的测量分类
提出了一种NASA机载测量数据文件中测量变量的分类算法。提出的解决方案利用决策树和朴素贝叶斯分类器的组合。为了减轻朴素贝叶斯的独立性假设,我们根据每个特征在分类过程中的作用对特征集应用权重向量。在研究了各种权重计算方法后,选择层次分析法来计算权重向量。用NASA最近的数据对该算法进行的评估表明,该算法提供了稳健的结果,并且在测量数据不一致和不准确的情况下超出了预期的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A machine learning based prognostic prediction of cervical myelopathy using diffusion tensor imaging Measurement classification using hybrid weighted Naive Bayes On the comparison of an interval Type-2 Fuzzy interpolation system and other interpolation methods used in industrial modeless robotic calibrations A novel hybrid of S2DPCA and SVM for knee osteoarthritis classification A hybrid P2P and master-slave cooperative distributed multi-agent reinforcement learning technique with asynchronously triggered exploratory trials and clutter-index-based selected sub-goals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1