Recent advances in robot-assisted echography: combining perception, control and cognition

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation and Systems Pub Date : 2020-09-08 DOI:10.1049/ccs.2020.0015
Zhenyu Lu, Miao Li, Andy Annamalai, Chenguang Yang
{"title":"Recent advances in robot-assisted echography: combining perception, control and cognition","authors":"Zhenyu Lu,&nbsp;Miao Li,&nbsp;Andy Annamalai,&nbsp;Chenguang Yang","doi":"10.1049/ccs.2020.0015","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Echography imaging is an important technique frequently used in medical diagnostics due to low-cost, non-ionising characteristics, and pragmatic convenience. Due to the shortage of skilful technicians and injuries of physicians sustained from diagnosing several patients, robot-assisted echography (RAE) system is gaining great attention in recent decades. A thorough study of the recent research advances in the field of perception, control and cognition techniques used in RAE systems is presented in this study. This survey introduces the representative system structure, applications and projects, and products. Challenges and key technological issues faced by the traditional RAE system and how the current artificial intelligence and cobots attempt to overcome these issues are summarised. Furthermore, significant future research directions in this field have been identified by this study as cognitive computing, operational skills transfer, and commercially feasible system design.</p>\n </div>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs.2020.0015","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2020.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

Abstract

Echography imaging is an important technique frequently used in medical diagnostics due to low-cost, non-ionising characteristics, and pragmatic convenience. Due to the shortage of skilful technicians and injuries of physicians sustained from diagnosing several patients, robot-assisted echography (RAE) system is gaining great attention in recent decades. A thorough study of the recent research advances in the field of perception, control and cognition techniques used in RAE systems is presented in this study. This survey introduces the representative system structure, applications and projects, and products. Challenges and key technological issues faced by the traditional RAE system and how the current artificial intelligence and cobots attempt to overcome these issues are summarised. Furthermore, significant future research directions in this field have been identified by this study as cognitive computing, operational skills transfer, and commercially feasible system design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人辅助超声技术的最新进展:结合感知、控制和认知
超声成像具有成本低、非电离、实用方便等特点,是医学诊断中常用的一种重要技术。由于技术熟练的技术人员的缺乏和医生因诊断多例患者而造成的损伤,机器人辅助超声(RAE)系统在近几十年来得到了广泛的关注。本研究对RAE系统中使用的感知、控制和认知技术领域的最新研究进展进行了深入的研究。本调查介绍了代表性的系统结构、应用和项目以及产品。总结了传统RAE系统面临的挑战和关键技术问题,以及当前人工智能和协作机器人如何克服这些问题。此外,本研究还确定了该领域未来的重要研究方向是认知计算、操作技能转移和商业上可行的系统设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
期刊最新文献
EF-CorrCA: A multi-modal EEG-fNIRS subject independent model to assess speech quality on brain activity using correlated component analysis Detection of autism spectrum disorder using multi-scale enhanced graph convolutional network Evolving usability heuristics for visualising Augmented Reality/Mixed Reality applications using cognitive model of information processing and fuzzy analytical hierarchy process Emotion classification with multi-modal physiological signals using multi-attention-based neural network Optimisation of deep neural network model using Reptile meta learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1