{"title":"A hybrid MoM/FDTD technique for studying human head/antenna interactions","authors":"E. Forgy, W. Chew, J. Jin","doi":"10.1109/APWC.1998.730652","DOIUrl":null,"url":null,"abstract":"As advances in numerical methods for solutions to Maxwell's equations accelerate, larger and more complex electromagnetic problems are becoming tractable at an astounding rate. The science of computational electromagnetics (CEM) gains inertia with each passing day. The maturing field of CEM research has sprouted various branches of research. The finite-difference time-domain (FDTD) method, introduced in 1966 by Yee (1966), and pioneered by Taflove (1995), among others, since 1975, provides a simple and robust method for simulating the propagation of electromagnetic radiation through complex media, e.g., human tissue. Although the FDTD method performs superbly for such propagation simulations, it is not very well suited for modeling complex metallic structures, e.g., antennas. Conversely, a distinct branch of CEM research, the method of moments (MoM), is superior for modeling complex metallic structures and is not very well suited for propagation through complex media, such as human tissue. In this paper, a hybrid MoM/FDTD method for simulating the interaction of antennas with the human head is presented.","PeriodicalId":246376,"journal":{"name":"1998 IEEE-APS Conference on Antennas and Propagation for Wireless Communications (Cat. No.98EX184)","volume":"493 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE-APS Conference on Antennas and Propagation for Wireless Communications (Cat. No.98EX184)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWC.1998.730652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
As advances in numerical methods for solutions to Maxwell's equations accelerate, larger and more complex electromagnetic problems are becoming tractable at an astounding rate. The science of computational electromagnetics (CEM) gains inertia with each passing day. The maturing field of CEM research has sprouted various branches of research. The finite-difference time-domain (FDTD) method, introduced in 1966 by Yee (1966), and pioneered by Taflove (1995), among others, since 1975, provides a simple and robust method for simulating the propagation of electromagnetic radiation through complex media, e.g., human tissue. Although the FDTD method performs superbly for such propagation simulations, it is not very well suited for modeling complex metallic structures, e.g., antennas. Conversely, a distinct branch of CEM research, the method of moments (MoM), is superior for modeling complex metallic structures and is not very well suited for propagation through complex media, such as human tissue. In this paper, a hybrid MoM/FDTD method for simulating the interaction of antennas with the human head is presented.