Performance Analysis with Bayesian Inference

N. Couderc, Christoph Reichenbach, Emma Söderberg
{"title":"Performance Analysis with Bayesian Inference","authors":"N. Couderc, Christoph Reichenbach, Emma Söderberg","doi":"10.1109/ICSE-NIER58687.2023.00026","DOIUrl":null,"url":null,"abstract":"Statistics are part of any empirical science, and performance analysis is no exception. However, for non-statisticians, picking the right statistical tool to answer a research question can be challenging; each statistical tool comes with a set of assumptions, and it is not clear to researchers what happens when those assumptions are violated. Bayesian statistics offers a framework with more flexibility and with explicit assumptions. In this paper, we present a method to analyse benchmark results using Bayesian inference. We demonstrate how to perform a Bayesian analysis of variance (ANOVA) to estimate what factors matter most for performance, and describe how to investigate what factors affect the impact of optimizations. We find the Bayesian model more flexible, and the Bayesian ANOVA’s output easier to interpret.","PeriodicalId":297025,"journal":{"name":"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-NIER58687.2023.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Statistics are part of any empirical science, and performance analysis is no exception. However, for non-statisticians, picking the right statistical tool to answer a research question can be challenging; each statistical tool comes with a set of assumptions, and it is not clear to researchers what happens when those assumptions are violated. Bayesian statistics offers a framework with more flexibility and with explicit assumptions. In this paper, we present a method to analyse benchmark results using Bayesian inference. We demonstrate how to perform a Bayesian analysis of variance (ANOVA) to estimate what factors matter most for performance, and describe how to investigate what factors affect the impact of optimizations. We find the Bayesian model more flexible, and the Bayesian ANOVA’s output easier to interpret.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯推理的性能分析
统计是任何实证科学的一部分,绩效分析也不例外。然而,对于非统计学家来说,选择正确的统计工具来回答一个研究问题可能是一个挑战;每个统计工具都有一组假设,研究人员不清楚当这些假设被违反时会发生什么。贝叶斯统计提供了一个具有更大灵活性和明确假设的框架。本文提出了一种利用贝叶斯推理分析基准测试结果的方法。我们演示了如何执行贝叶斯方差分析(ANOVA)来估计哪些因素对性能最重要,并描述了如何调查哪些因素影响优化的影响。我们发现贝叶斯模型更灵活,贝叶斯方差分析的输出更容易解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis with Bayesian Inference Interpersonal Trust in OSS: Exploring Dimensions of Trust in GitHub Pull Requests Message from the ICSE 2023 General Chair A Novel and Pragmatic Scenario Modeling Framework with Verification-in-the-loop for Autonomous Driving Systems Test-Driven Development Benefits Beyond Design Quality: Flow State and Developer Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1