Investigating Heritability Across Resting State Brain Networks Via Heat Kernel Smoothing on Persistence Diagrams

Arman P. Kulkarni, M. Chung, B. Bendlin, V. Prabhakaran
{"title":"Investigating Heritability Across Resting State Brain Networks Via Heat Kernel Smoothing on Persistence Diagrams","authors":"Arman P. Kulkarni, M. Chung, B. Bendlin, V. Prabhakaran","doi":"10.1109/ISBIWorkshops50223.2020.9153361","DOIUrl":null,"url":null,"abstract":"The brain’s heritable topological differences in resting state functional connectivity (rsfc) measured via resting state fMRI (rsfMRI) provide important insight into brain function and dysfunction. Current techniques investigating heritability are limited by arbitrary rsfc threshold selection and reduction of otherwise detailed brain topological properties into summary measures. Topological Data Analysis (TDA) is a novel tool for addressing these limitations by analyzing how the topological properties of data vary without arbitrary threshold and summary metric construction. TDA applies a filtration to the data and constructs a persistence diagram (PD). Therefore, the purpose of this study was to compute PDs to determine TDAbased heritability of static brain network topological features. To this end, we calculated a robust heritability index map across smoothed PDs derived from twin rsfMRI data.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The brain’s heritable topological differences in resting state functional connectivity (rsfc) measured via resting state fMRI (rsfMRI) provide important insight into brain function and dysfunction. Current techniques investigating heritability are limited by arbitrary rsfc threshold selection and reduction of otherwise detailed brain topological properties into summary measures. Topological Data Analysis (TDA) is a novel tool for addressing these limitations by analyzing how the topological properties of data vary without arbitrary threshold and summary metric construction. TDA applies a filtration to the data and constructs a persistence diagram (PD). Therefore, the purpose of this study was to compute PDs to determine TDAbased heritability of static brain network topological features. To this end, we calculated a robust heritability index map across smoothed PDs derived from twin rsfMRI data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过持续图的热核平滑研究静息状态脑网络的遗传性
通过静息状态功能磁共振成像(rsfMRI)测量大脑静息状态功能连接(rsfc)的遗传拓扑差异,为了解大脑功能和功能障碍提供了重要的见解。目前研究遗传性的技术受到任意rsfc阈值选择的限制,并且将其他详细的大脑拓扑特性减少为总结测量。拓扑数据分析(TDA)是一种新的工具,通过分析数据的拓扑属性如何在没有任意阈值和汇总度量构造的情况下变化来解决这些限制。TDA对数据进行过滤,并构造持久性图(PD)。因此,本研究的目的是计算pd以确定基于tda的静态脑网络拓扑特征的遗传力。为此,我们计算了来自双胞胎rsfMRI数据的平滑pd的稳健遗传指数图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material Decomposition Problem in Spectral CT: A Transfer Deep Learning Approach Deep Convolutional Neural Network for Parkinson’s Disease Based Handwriting Screening Deep Quantized Representation For Enhanced Reconstruction Multi-Channel Deep Neural Network For Temporal Lobe Epilepsy Classification Using Multimodal Mri Data Joint Low Dose CT Denoising And Kidney Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1