{"title":"Design of a CMOS Analog Front-End for Wearable A-Mode Ultrasound Hand Gesture Recognition","authors":"Yaohua Zhang, D. Jiang, A. Demosthenous","doi":"10.1109/prime55000.2022.9816772","DOIUrl":null,"url":null,"abstract":"This paper presents a CMOS analog front-end for wearable A-mode ultrasound hand gesture recognition. This analog front-end is part of the research into using ultrasound to record and decode muscle signals with the aim of controlling a prosthetic hand as an alternative to surface electromyography. In this paper, the design of a pulser for driving piezoelectric transducers as well as a low-noise amplifier for the received echoes are presented. Simulation results show that the pulser circuit is capable of driving a 137 pF capacitive load with 30 V pulses at a frequency of 1 MHz and dissipates 142.1 mW power. The low-noise amplifier demonstrates a gain of 34 dB and an input-referred noise of 8.58 nV/$\\sqrt{}$Hz at 1 MHz.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a CMOS analog front-end for wearable A-mode ultrasound hand gesture recognition. This analog front-end is part of the research into using ultrasound to record and decode muscle signals with the aim of controlling a prosthetic hand as an alternative to surface electromyography. In this paper, the design of a pulser for driving piezoelectric transducers as well as a low-noise amplifier for the received echoes are presented. Simulation results show that the pulser circuit is capable of driving a 137 pF capacitive load with 30 V pulses at a frequency of 1 MHz and dissipates 142.1 mW power. The low-noise amplifier demonstrates a gain of 34 dB and an input-referred noise of 8.58 nV/$\sqrt{}$Hz at 1 MHz.