Multi-view Clustering of Visual Words Using Canonical Correlation Analysis for Human Action Recognition

Behrouz Saghafi, D. Rajan
{"title":"Multi-view Clustering of Visual Words Using Canonical Correlation Analysis for Human Action Recognition","authors":"Behrouz Saghafi, D. Rajan","doi":"10.1109/ICMLA.2010.102","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach for introducing semantic relations into the bag-of-words framework for recognizing human actions. We represent visual words in two different views: the original features and the document co-occurrence representation. The latter view conveys semantic relations but is large, sparse and noisy. We use canonical correlation analysis between the two views to find a subspace in which the words are more semantically distributed. We apply k-means clustering in the computed space to find semantically meaningful clusters and use them as the semantic visual vocabulary. Incorporating the semantic visual vocabulary the features are quantized to form more discriminative histograms. Eventually the histograms are classified using an SVM classifier. We have tested our approach on KTH action dataset and achieved promising results.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose a novel approach for introducing semantic relations into the bag-of-words framework for recognizing human actions. We represent visual words in two different views: the original features and the document co-occurrence representation. The latter view conveys semantic relations but is large, sparse and noisy. We use canonical correlation analysis between the two views to find a subspace in which the words are more semantically distributed. We apply k-means clustering in the computed space to find semantically meaningful clusters and use them as the semantic visual vocabulary. Incorporating the semantic visual vocabulary the features are quantized to form more discriminative histograms. Eventually the histograms are classified using an SVM classifier. We have tested our approach on KTH action dataset and achieved promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于典型相关分析的视觉词多视图聚类研究
在本文中,我们提出了一种将语义关系引入词袋框架以识别人类行为的新方法。我们从两种不同的角度来表示视觉词:原始特征表示和文档共现表示。后一种视图传达语义关系,但大,稀疏和嘈杂。我们使用两个视图之间的典型相关分析来找到一个词在语义上更分布的子空间。我们在计算空间中应用k-means聚类来寻找语义上有意义的聚类,并将其用作语义视觉词汇。结合语义视觉词汇,对特征进行量化,形成更具判别性的直方图。最后使用支持向量机分类器对直方图进行分类。我们已经在KTH动作数据集上测试了我们的方法,并取得了很好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1