Enhancing Event-based Structured Light Imaging with a Single Frame

Huijiao Wang, Tangbo Liu, Chu He, Cheng Li, Jian-zhuo Liu, Lei Yu
{"title":"Enhancing Event-based Structured Light Imaging with a Single Frame","authors":"Huijiao Wang, Tangbo Liu, Chu He, Cheng Li, Jian-zhuo Liu, Lei Yu","doi":"10.1109/MFI55806.2022.9913845","DOIUrl":null,"url":null,"abstract":"Benefiting from the extremely low latency, events have been used for Structured Light Imaging (SLI) to predict the depth surface. However, existing methods only focus on improving scanning speeds but neglect perturbations from event noise and timestamp jittering for depth estimation. In this paper, we build a hybrid SLI system equipped with an event camera, a high-resolution frame camera, and a digital light projector, where a single intensity frame is adopted as a guidance to enhance the event-based SLI quality. To achieve this end, we propose a Multi-Modal Feature Fusion Network (MFFN) consisting of a feature fusion module and an upscale module to simultaneously fuse events and a single intensity frame, suppress event perturbations, and reconstruct a high-quality depth surface. Further, for training MFFN, we build a new Structured Light Imaging based on Event and Frame cameras (EF-SLI) dataset collected from the hybrid SLI system, containing paired inputs composed of a set of synchronized events and one single corresponding frame, and ground-truth references obtained by a high-quality SLI approach. Experiments demonstrate that our proposed MFFN outperforms state-of-the-art event-based SLI approaches in terms of accuracy at different scanning speeds.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"57 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Benefiting from the extremely low latency, events have been used for Structured Light Imaging (SLI) to predict the depth surface. However, existing methods only focus on improving scanning speeds but neglect perturbations from event noise and timestamp jittering for depth estimation. In this paper, we build a hybrid SLI system equipped with an event camera, a high-resolution frame camera, and a digital light projector, where a single intensity frame is adopted as a guidance to enhance the event-based SLI quality. To achieve this end, we propose a Multi-Modal Feature Fusion Network (MFFN) consisting of a feature fusion module and an upscale module to simultaneously fuse events and a single intensity frame, suppress event perturbations, and reconstruct a high-quality depth surface. Further, for training MFFN, we build a new Structured Light Imaging based on Event and Frame cameras (EF-SLI) dataset collected from the hybrid SLI system, containing paired inputs composed of a set of synchronized events and one single corresponding frame, and ground-truth references obtained by a high-quality SLI approach. Experiments demonstrate that our proposed MFFN outperforms state-of-the-art event-based SLI approaches in terms of accuracy at different scanning speeds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单帧增强基于事件的结构光成像
得益于极低的延迟,事件已被用于结构光成像(SLI)来预测深度表面。然而,现有的方法只注重提高扫描速度,而忽略了事件噪声和时间戳抖动对深度估计的影响。在本文中,我们构建了一个由事件相机、高分辨率帧相机和数字光投影仪组成的混合SLI系统,其中采用单强度帧作为指导,以提高基于事件的SLI质量。为了实现这一目标,我们提出了一个由特征融合模块和高级模块组成的多模态特征融合网络(MFFN),以同时融合事件和单个强度帧,抑制事件扰动,重建高质量的深度表面。此外,为了训练MFFN,我们基于从混合SLI系统中收集的事件和帧相机(EF-SLI)数据集构建了新的结构光成像,该数据集包含由一组同步事件和单个对应帧组成的配对输入,以及由高质量SLI方法获得的真地参考。实验表明,我们提出的MFFN在不同扫描速度下的精度优于最先进的基于事件的SLI方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regression with Ensemble of RANSAC in Camera-LiDAR Fusion for Road Boundary Detection and Modeling Global-local Feature Aggregation for Event-based Object Detection on EventKITTI Predicting Autonomous Vehicle Navigation Parameters via Image and Image-and-Point Cloud Fusion-based End-to-End Methods Perception-aware Receding Horizon Path Planning for UAVs with LiDAR-based SLAM PIPO: Policy Optimization with Permutation-Invariant Constraint for Distributed Multi-Robot Navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1