Abdulrahman Bin Rabiah, Yugarshi Shashwat, Fatemah Alharbi, Silas Richelson, N. Abu-Ghazaleh
{"title":"MSS: Lightweight network authentication for resource constrained devices via Mergeable Stateful Signatures","authors":"Abdulrahman Bin Rabiah, Yugarshi Shashwat, Fatemah Alharbi, Silas Richelson, N. Abu-Ghazaleh","doi":"10.1109/ICDCS51616.2021.00035","DOIUrl":null,"url":null,"abstract":"Signature-based authentication is a core cryptographic primitive essential for most secure networking protocols. We introduce a new signature scheme, MSS, that allows a client to efficiently authenticate herself to a server. We model our new scheme in an offline/online model where client online time is premium. The offline component derives basis signatures that are then composed based on the data being signed to provide signatures efficiently and securely during run-time. MSS requires the server to maintain state and is suitable for applications where a device has long-term associations with the server. MSS allows direct comparison to hash chains-based authentication schemes used in similar settings, and is relevant to resource-constrained devices e.g., IoT. We derive MSS instantiations for two cryptographic families, assuming the hardness of RSA and decisional Diffie-Hellman (DDH) respectively, demonstrating the generality of the idea. We then use our new scheme to design an efficient time-based one-time password (TOTP) protocol. Specifically, we implement two TOTP authentication systems from our RSA and DDH instantiations. We evaluate the TOTP implementations on Raspberry Pis which demonstrate appealing gains: MSS reduces authentication latency and energy consumption by a factor of ~82 and 792, respectively, compared to a recent hash chain-based TOTP system.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"52 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Signature-based authentication is a core cryptographic primitive essential for most secure networking protocols. We introduce a new signature scheme, MSS, that allows a client to efficiently authenticate herself to a server. We model our new scheme in an offline/online model where client online time is premium. The offline component derives basis signatures that are then composed based on the data being signed to provide signatures efficiently and securely during run-time. MSS requires the server to maintain state and is suitable for applications where a device has long-term associations with the server. MSS allows direct comparison to hash chains-based authentication schemes used in similar settings, and is relevant to resource-constrained devices e.g., IoT. We derive MSS instantiations for two cryptographic families, assuming the hardness of RSA and decisional Diffie-Hellman (DDH) respectively, demonstrating the generality of the idea. We then use our new scheme to design an efficient time-based one-time password (TOTP) protocol. Specifically, we implement two TOTP authentication systems from our RSA and DDH instantiations. We evaluate the TOTP implementations on Raspberry Pis which demonstrate appealing gains: MSS reduces authentication latency and energy consumption by a factor of ~82 and 792, respectively, compared to a recent hash chain-based TOTP system.