Estimation of Pitch Targets from Speech Signals by Joint Regularized Optimization

P. Birkholz, Patrick Schmaser, Yi Xu
{"title":"Estimation of Pitch Targets from Speech Signals by Joint Regularized Optimization","authors":"P. Birkholz, Patrick Schmaser, Yi Xu","doi":"10.23919/EUSIPCO.2018.8552945","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to estimate the pitch target parameters of the target approximation model (TAM). The TAM allows the compact representation of natural pitch contours on a solid theoretical basis and can be used as an intonation model for text-to-speech synthesis. In contrast to previous approaches, the method proposed here estimates the parameters of all targets jointly, uses 5th-order (instead of 3rd-order) linear systems to model the target approximation process, and uses regularization to avoid unnatural pitch targets. The effect of these features on the modeling error and the target parameter distributions are shown. The proposed method has been made available as the open-source software tool TargetOptimizer.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8552945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a novel method to estimate the pitch target parameters of the target approximation model (TAM). The TAM allows the compact representation of natural pitch contours on a solid theoretical basis and can be used as an intonation model for text-to-speech synthesis. In contrast to previous approaches, the method proposed here estimates the parameters of all targets jointly, uses 5th-order (instead of 3rd-order) linear systems to model the target approximation process, and uses regularization to avoid unnatural pitch targets. The effect of these features on the modeling error and the target parameter distributions are shown. The proposed method has been made available as the open-source software tool TargetOptimizer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于联合正则化优化的语音基音目标估计
提出了一种新的目标近似模型(TAM)的俯仰目标参数估计方法。TAM允许在坚实的理论基础上紧凑地表示自然音高轮廓,并且可以用作文本到语音合成的语调模型。与以往的方法相比,本文提出的方法联合估计所有目标的参数,使用5阶(而不是3阶)线性系统来建模目标逼近过程,并使用正则化来避免非自然俯pitch目标。给出了这些特征对建模误差和目标参数分布的影响。所提出的方法已经作为开源软件工具TargetOptimizer提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1