Shallow parsing natural language processing implementation for intelligent automatic customer service system

{"title":"Shallow parsing natural language processing implementation for intelligent automatic customer service system","authors":"","doi":"10.1109/icacsis.2014.7065845","DOIUrl":null,"url":null,"abstract":"This paper introduces implementation of Shallow-Parsing methods in Question Answering System of Natural Language Processing for Indonesian Automatic Customer Service. The main idea of the approach using Shallow-Parsing is indexing the answer. In this paper we present some steps of simple Information Extraction (IE) using Shallow-Parsing such as Part-of-Speech Tagging, IOB Tagging, Text Chunking, Predictive Annotation, Relation Finding, and Answer Retrieval. The main purpose of the task is to identify key information, key phrase and question phrase that contained in each question or answer. With that, information system can index the given question and retrieve the relevant answer to customer. The experiments of Automatic Customer Service reported in this paper show competitive results, given 100 questions; system can respond 89 questions with relevant answer correctly. This experiment shows that the accuracy of the Automatic Customer Service system is 89% of 100 given questions.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icacsis.2014.7065845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper introduces implementation of Shallow-Parsing methods in Question Answering System of Natural Language Processing for Indonesian Automatic Customer Service. The main idea of the approach using Shallow-Parsing is indexing the answer. In this paper we present some steps of simple Information Extraction (IE) using Shallow-Parsing such as Part-of-Speech Tagging, IOB Tagging, Text Chunking, Predictive Annotation, Relation Finding, and Answer Retrieval. The main purpose of the task is to identify key information, key phrase and question phrase that contained in each question or answer. With that, information system can index the given question and retrieve the relevant answer to customer. The experiments of Automatic Customer Service reported in this paper show competitive results, given 100 questions; system can respond 89 questions with relevant answer correctly. This experiment shows that the accuracy of the Automatic Customer Service system is 89% of 100 given questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浅解析自然语言处理智能自动客服系统的实现
本文介绍了浅层解析方法在印尼语自动客服自然语言处理问答系统中的实现。使用浅层解析方法的主要思想是为答案建立索引。在本文中,我们介绍了一些使用浅解析的简单信息提取(IE)的步骤,如词性标注、IOB标注、文本分块、预测标注、关系查找和答案检索。任务的主要目的是识别每个问题或答案中包含的关键信息,关键短语和问题短语。这样,信息系统就可以对给定的问题进行索引,并为客户检索相关的答案。在给定100个问题的情况下,本文所报道的自动客户服务实验显示出具有竞争力的结果;系统可以正确回答89个问题并给出相关答案。该实验表明,自动客户服务系统的准确率为89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model prediction for accreditation of public junior high school in Bogor using spatial decision tree Campaign 2.0: Analysis of social media utilization in 2014 Jakarta legislative election Performance of robust two-dimensional principal component for classification Extending V-model practices to support SRE to build secure web application A comparison of backpropagation and LVQ: A case study of lung sound recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1