Rank Prediction for Portfolio Management Using Artificial Neural Networks

Jiyoon Bae, Ghudae Sim, Hyungbin Yun, Junhee Seok
{"title":"Rank Prediction for Portfolio Management Using Artificial Neural Networks","authors":"Jiyoon Bae, Ghudae Sim, Hyungbin Yun, Junhee Seok","doi":"10.1109/ICUFN.2018.8436983","DOIUrl":null,"url":null,"abstract":"The rank of equities is often used to determine the investment portfolio instead of prices because ranking is in general believed to be robust. In this paper, we propose a rank prediction method for portfolio management using ANN. While an ANN requires a large dataset to train the model, the sample size is usually insufficient in stock market data. Therefore, the proposed method uses data augmentation and an ensemble ANN model. In the simulation study, the proposed method shows 13 percentage of performance improvement from the other methods to predict the profit rank of equities in South-East Asian market.","PeriodicalId":224367,"journal":{"name":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN.2018.8436983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rank of equities is often used to determine the investment portfolio instead of prices because ranking is in general believed to be robust. In this paper, we propose a rank prediction method for portfolio management using ANN. While an ANN requires a large dataset to train the model, the sample size is usually insufficient in stock market data. Therefore, the proposed method uses data augmentation and an ensemble ANN model. In the simulation study, the proposed method shows 13 percentage of performance improvement from the other methods to predict the profit rank of equities in South-East Asian market.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的投资组合管理等级预测
股票的排名通常被用来决定投资组合,而不是价格,因为排名通常被认为是稳健的。本文提出了一种基于人工神经网络的投资组合管理等级预测方法。虽然人工神经网络需要一个大的数据集来训练模型,但股票市场数据的样本量通常是不足的。因此,该方法采用了数据增强和集成人工神经网络模型。在模拟研究中,所提出的方法在预测东南亚市场股票的利润等级方面比其他方法提高了13个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low Overhead Feedback Scheme of Channel Covariance Matrix for Massive MIMO Systems Development of a Hybrid Decision-Making Method Based on a Simulation-Genetic Algorithm in a Web-Oriented Metallurgical Enterprise Information System Indoor Semantic Segmentation for Robot Navigating on Mobile Small Drone Development for Public Service Relating to Korean PPI Impact of Both Nonzero Boresight and Jitter Pointing Error on Outage Capacity of FSO Communication Systems Over Strong Turbulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1