Conditional Language Models for Community-Level Linguistic Variation

Bill Noble, Jean-Philippe Bernardy
{"title":"Conditional Language Models for Community-Level Linguistic Variation","authors":"Bill Noble, Jean-Philippe Bernardy","doi":"10.18653/v1/2022.nlpcss-1.9","DOIUrl":null,"url":null,"abstract":"Community-level linguistic variation is a core concept in sociolinguistics. In this paper, we use conditioned neural language models to learn vector representations for 510 online communities. We use these representations to measure linguistic variation between commu-nities and investigate the degree to which linguistic variation corresponds with social connections between communities. We find that our sociolinguistic embeddings are highly correlated with a social network-based representation that does not use any linguistic input.","PeriodicalId":438120,"journal":{"name":"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)","volume":"22 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.nlpcss-1.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Community-level linguistic variation is a core concept in sociolinguistics. In this paper, we use conditioned neural language models to learn vector representations for 510 online communities. We use these representations to measure linguistic variation between commu-nities and investigate the degree to which linguistic variation corresponds with social connections between communities. We find that our sociolinguistic embeddings are highly correlated with a social network-based representation that does not use any linguistic input.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社区层面语言变异的条件语言模型
社区层面的语言变异是社会语言学的一个核心概念。在本文中,我们使用条件神经语言模型来学习510个在线社区的向量表示。我们使用这些表征来衡量社区之间的语言差异,并研究语言差异与社区之间社会联系的对应程度。我们发现我们的社会语言学嵌入与不使用任何语言输入的基于社会网络的表示高度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OLALA: Object-Level Active Learning for Efficient Document Layout Annotation Conspiracy Narratives in the Protest Movement Against COVID-19 Restrictions in Germany. A Long-term Content Analysis of Telegram Chat Groups. An Analysis of Acknowledgments in NLP Conference Proceedings Detecting Dissonant Stance in Social Media: The Role of Topic Exposure To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1