Active learning for support vector regression in radiation shielding design

Paulina Duckic, Krešimir Trontl, M. Matijević
{"title":"Active learning for support vector regression in radiation shielding design","authors":"Paulina Duckic, Krešimir Trontl, M. Matijević","doi":"10.1109/HPCSim.2015.7237055","DOIUrl":null,"url":null,"abstract":"Recently a novel approach based on support vector regression technique has been proposed and tested for the estimation of multi layer buildup factors for gamma ray shielding calculations, while for neutron shielding calculations some initial analyses have been conducted. During the development of the model a number of questions regarding possible application of active learning measures have been raised. In this paper general applicability of the active learning measures on the problem, in particular data transfer method used in the investigation, and testing of the active procedure are discussed.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently a novel approach based on support vector regression technique has been proposed and tested for the estimation of multi layer buildup factors for gamma ray shielding calculations, while for neutron shielding calculations some initial analyses have been conducted. During the development of the model a number of questions regarding possible application of active learning measures have been raised. In this paper general applicability of the active learning measures on the problem, in particular data transfer method used in the investigation, and testing of the active procedure are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辐射屏蔽设计中支持向量回归的主动学习
近年来,人们提出了一种基于支持向量回归技术的新方法,并对伽马射线屏蔽计算中多层累积因子的估计进行了试验,对中子屏蔽计算也进行了初步分析。在模型的发展过程中,提出了一些关于主动学习措施可能应用的问题。本文讨论了主动学习措施在该问题上的一般适用性,特别是在调查中使用的数据传输方法,以及主动过程的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient performance evaluation of cloud computing applications and dynamic resource control in large-scale distributed systems A security framework for population-scale genomics analysis Deep learning with shallow architecture for image classification A new reality requiers new ecosystems Investigation of DVFS based dynamic reliability management for chip multiprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1