Estimating Spatial Gait Parameters from the Planar Covariation of Lower Limb Elevation Angles: a Pilot Study

Simone Ranaldi, S. Conforto, C. D. Marchis
{"title":"Estimating Spatial Gait Parameters from the Planar Covariation of Lower Limb Elevation Angles: a Pilot Study","authors":"Simone Ranaldi, S. Conforto, C. D. Marchis","doi":"10.1109/MeMeA54994.2022.9856500","DOIUrl":null,"url":null,"abstract":"When characterizing human gait control strategies, theories based on the modularity of the neuromuscular system have been proven to be powerful in providing a compact description of the gait patterns. The planar covariation law of lower limb elevation angles has been proposed as a compact, modular description of gait kinematics. In this paper, we exploit this model for characterizing healthy subjects' spatial gait parameters during walking at different speeds, one self-selected and one slightly slower than the subject's comfortable pace. Different geometrical features have been calculated over the gait loop, that is the planar loop defined by the covariation of the thigh, shank and foot elevation angles. A correlation analysis has been carried out between these features and classical gait spatial parameters (step length, step width, stride length and foot clearance) by training a linear regressor on the dataset comprising both speeds. The results from this analysis have highlighted a correlation with some spatial gait parameters across the two speed conditions, indicating that this compact description of kinematics unravels a significant biomechanical meaning. These results can be exploited to guide the control mechanisms of external assistive devices, such as prostheses or exoskeletons, based purely on the measurement of few relevant kinematic quantities of the lower limb segments.","PeriodicalId":106228,"journal":{"name":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA54994.2022.9856500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When characterizing human gait control strategies, theories based on the modularity of the neuromuscular system have been proven to be powerful in providing a compact description of the gait patterns. The planar covariation law of lower limb elevation angles has been proposed as a compact, modular description of gait kinematics. In this paper, we exploit this model for characterizing healthy subjects' spatial gait parameters during walking at different speeds, one self-selected and one slightly slower than the subject's comfortable pace. Different geometrical features have been calculated over the gait loop, that is the planar loop defined by the covariation of the thigh, shank and foot elevation angles. A correlation analysis has been carried out between these features and classical gait spatial parameters (step length, step width, stride length and foot clearance) by training a linear regressor on the dataset comprising both speeds. The results from this analysis have highlighted a correlation with some spatial gait parameters across the two speed conditions, indicating that this compact description of kinematics unravels a significant biomechanical meaning. These results can be exploited to guide the control mechanisms of external assistive devices, such as prostheses or exoskeletons, based purely on the measurement of few relevant kinematic quantities of the lower limb segments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从下肢仰角的平面共变估计空间步态参数:一项初步研究
在描述人类步态控制策略时,基于神经肌肉系统模块化的理论已被证明在提供步态模式的紧凑描述方面是强大的。提出了下肢仰角平面共变规律,作为一种紧凑、模块化的步态运动学描述。在本文中,我们利用该模型来表征健康受试者在不同速度下的空间步态参数,一个是自我选择的,一个是略慢于受试者舒适的步伐。在步态环上计算了不同的几何特征,即由大腿、小腿和足的仰角共变定义的平面环。通过在包含两种速度的数据集上训练线性回归器,对这些特征与经典步态空间参数(步长、步宽、步长和足间隙)进行相关性分析。该分析结果强调了在两种速度条件下与一些空间步态参数的相关性,表明这种紧凑的运动学描述揭示了重要的生物力学意义。这些结果可以用来指导外部辅助装置的控制机制,如假体或外骨骼,纯粹基于下肢部分的几个相关运动学量的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time and Frequency domain analysis of APB muscles Abduction in adult dominant hand using surface electromyography signals Comparison of Noise Reduction Techniques for Dysarthric Speech Recognition Effects of ROI positioning on the measurement of engineered muscle tissue contractility with an optical tracking method Atrial Fibrillation Detection by Means of Edge Computing on Wearable Device: A Feasibility Assessment Unraveling the biological meaning of radiomic features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1