{"title":"Innovative Slope Stability and Displacement Analyses","authors":"Ching-Chuan Huang","doi":"10.18689/MJAES-1000102","DOIUrl":null,"url":null,"abstract":"Conventional methods of slope stability provides a constant value of safety factor for the slope, providing no information of slope displacements and possible variations of safety margins along the potential failure surface. To overcome this drawback, an innovative approach is proposed here, which takes into account all limit equilibrium requirements originally adopted in the conventional slope stability analyses, with a displacement compatibility function and a hyperbolic shear stress-displacement soil model. The new method provides incremental slope displacements induced by internal or external stress (or safety status) variations. A case study on a well-monitored slope during a rainstorm showed that the measured slope displacement caused by an elevated groundwater table can be simulated using the proposed method along with hyperbolic soil parameters obtained in large-scale direct shear tests. The proposed method substantially strengthened the weakness associated with conventional slice methods, providing useful information of slope displacement induced by the elevated groundwater table.","PeriodicalId":249100,"journal":{"name":"Madridge Journal of Agriculture and Environmental Sciences","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Madridge Journal of Agriculture and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18689/MJAES-1000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional methods of slope stability provides a constant value of safety factor for the slope, providing no information of slope displacements and possible variations of safety margins along the potential failure surface. To overcome this drawback, an innovative approach is proposed here, which takes into account all limit equilibrium requirements originally adopted in the conventional slope stability analyses, with a displacement compatibility function and a hyperbolic shear stress-displacement soil model. The new method provides incremental slope displacements induced by internal or external stress (or safety status) variations. A case study on a well-monitored slope during a rainstorm showed that the measured slope displacement caused by an elevated groundwater table can be simulated using the proposed method along with hyperbolic soil parameters obtained in large-scale direct shear tests. The proposed method substantially strengthened the weakness associated with conventional slice methods, providing useful information of slope displacement induced by the elevated groundwater table.