{"title":"A CMOS integrated bacterial sensor for rapid detection of Pseudomonas aeruginosa","authors":"N. Nikkhoo, C. Mann, P. Gulak, K. Maxwell","doi":"10.1109/BIOCAS.2008.4696912","DOIUrl":null,"url":null,"abstract":"An integrated bacterial detection chip is implemented in 0.18 mum CMOS technology. The chip has been tested using pyocins as biological detecting elements along with the study of electrical noise generated in an integrated nanowell to detect the presence of two different bacterial clinical isolates of Pseudomonas aeruginosa. The chip successfully identifies the presence of bacterial strains sensitive to the pyocin in less than 10 minutes. The effect of bacterial cell concentration is also presented in the experimental results. The chip consumes 122 muW from 3.3 V supply for two recording channels and occupies an area of 0.48 mm2 in a 0.18 mum standard CMOS process.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
An integrated bacterial detection chip is implemented in 0.18 mum CMOS technology. The chip has been tested using pyocins as biological detecting elements along with the study of electrical noise generated in an integrated nanowell to detect the presence of two different bacterial clinical isolates of Pseudomonas aeruginosa. The chip successfully identifies the presence of bacterial strains sensitive to the pyocin in less than 10 minutes. The effect of bacterial cell concentration is also presented in the experimental results. The chip consumes 122 muW from 3.3 V supply for two recording channels and occupies an area of 0.48 mm2 in a 0.18 mum standard CMOS process.