Binary faster than Nyquist optical transmission via non-uniform power allocation

Yong Jin Daniel Kim, J. Bajcsy
{"title":"Binary faster than Nyquist optical transmission via non-uniform power allocation","authors":"Yong Jin Daniel Kim, J. Bajcsy","doi":"10.1109/CWIT.2013.6621616","DOIUrl":null,"url":null,"abstract":"Recently, faster-than-Nyquist (FTN) signaling (or also sub-Nyquist filtering) has been proposed as a means to increase the spectral efficiency of the next generation long-haul optical fiber transmission systems. In the high spectral efficiency regime, however, the severe intersymbol interference (ISI) inherent to the FTN signaling poses a significant challenge in implementing a practical FTN system. In this work, we propose to use non-uniform power allocation at the optical FTN transmitter and establish its optimality in the achievable capacity. Consequently, we utilize the non-uniform power allocation to design a low-complexity FTN receiver that can operate close to the channel capacity limit. Presented simulation results also illustrate that the proposed optical FTN signaling transceiver with non-uniform power allocation allows supporting very high spectral efficiencies.","PeriodicalId":398936,"journal":{"name":"2013 13th Canadian Workshop on Information Theory","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th Canadian Workshop on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2013.6621616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, faster-than-Nyquist (FTN) signaling (or also sub-Nyquist filtering) has been proposed as a means to increase the spectral efficiency of the next generation long-haul optical fiber transmission systems. In the high spectral efficiency regime, however, the severe intersymbol interference (ISI) inherent to the FTN signaling poses a significant challenge in implementing a practical FTN system. In this work, we propose to use non-uniform power allocation at the optical FTN transmitter and establish its optimality in the achievable capacity. Consequently, we utilize the non-uniform power allocation to design a low-complexity FTN receiver that can operate close to the channel capacity limit. Presented simulation results also illustrate that the proposed optical FTN signaling transceiver with non-uniform power allocation allows supporting very high spectral efficiencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过非均匀功率分配,二进制比奈奎斯特光传输更快
近年来,超奈奎斯特(FTN)信号(或亚奈奎斯特滤波)被提出作为提高下一代长途光纤传输系统频谱效率的一种手段。然而,在高频谱效率下,FTN信令固有的严重码间干扰(ISI)对实现实际FTN系统提出了重大挑战。在这项工作中,我们提出在光FTN发射机中使用非均匀功率分配,并在可实现的容量中建立其最优性。因此,我们利用非均匀功率分配来设计一种低复杂度的FTN接收器,该接收器可以接近信道容量限制。仿真结果还表明,采用非均匀功率分配的光FTN信令收发器可以支持非常高的频谱效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the achievability of the degrees of freedom for the three-cell MIMO interfering broadcast channel with minimum spatial dimensions Integrating prior knowledge in time series alignment: Prior Optimized Time Warping An achievability proof for the lossy coding of Markov sources with feed-forward Performance of MIMO adaptive subcarrier QAM intensity modulation in Gamma-Gamma turbulence Binary faster than Nyquist optical transmission via non-uniform power allocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1