Omnidirectional Robot Indoor Localisation using Two Pixy Cameras and Artificial Colour Code Signature Beacons

Mohanad N. Noaman, Z. Al-Shibaany, Saba Al-Wais
{"title":"Omnidirectional Robot Indoor Localisation using Two Pixy Cameras and Artificial Colour Code Signature Beacons","authors":"Mohanad N. Noaman, Z. Al-Shibaany, Saba Al-Wais","doi":"10.1145/3440840.3440849","DOIUrl":null,"url":null,"abstract":"Location estimation of Autonomous mobile robots is an essential and challenging task, especially for indoor applications. Despite the many solutions and algorithms that have been suggested in the literature to provide a precise localisation technique for mobile robots, it continues to be an open research problem and worth further study. In this paper, a predefined map with artificial colour code signature (CCs) beacons are used to build an effective algorithm to achieve an indoor localisation and position prediction of an omnidirectional mobile robot. This algorithm is primarily based on calculating the distance between the robot and the beacon using Pixy cameras, as vision sensors; then, estimating the position of the robot using a trilateration method. By comparing the results obtained in this paper with the mathematically obtained results, it is clearly shown that the robot effectively follows the localisation algorithm to estimate its pose (position and orientation), improving its localisation abilities in addition to obtaining its initial position. Furthermore, the limitations associated with using Pixy cameras are discussed in this paper as well.","PeriodicalId":273859,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440840.3440849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Location estimation of Autonomous mobile robots is an essential and challenging task, especially for indoor applications. Despite the many solutions and algorithms that have been suggested in the literature to provide a precise localisation technique for mobile robots, it continues to be an open research problem and worth further study. In this paper, a predefined map with artificial colour code signature (CCs) beacons are used to build an effective algorithm to achieve an indoor localisation and position prediction of an omnidirectional mobile robot. This algorithm is primarily based on calculating the distance between the robot and the beacon using Pixy cameras, as vision sensors; then, estimating the position of the robot using a trilateration method. By comparing the results obtained in this paper with the mathematically obtained results, it is clearly shown that the robot effectively follows the localisation algorithm to estimate its pose (position and orientation), improving its localisation abilities in addition to obtaining its initial position. Furthermore, the limitations associated with using Pixy cameras are discussed in this paper as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用两个像素摄像头和人工色码签名信标的全向机器人室内定位
自主移动机器人的位置估计是一项重要而具有挑战性的任务,特别是在室内应用中。尽管文献中提出了许多解决方案和算法来为移动机器人提供精确的定位技术,但它仍然是一个开放的研究问题,值得进一步研究。本文利用带有人工彩色码签名信标的预定义地图,构建了一种有效的算法,实现了全向移动机器人的室内定位和位置预测。该算法主要基于使用Pixy相机作为视觉传感器计算机器人与信标之间的距离;然后,利用三边测量法估计机器人的位置。将本文的结果与数学计算结果进行比较,可以清楚地看出机器人在获得初始位置的同时,有效地遵循定位算法来估计其姿态(位置和方向),提高了机器人的定位能力。此外,本文还讨论了与使用Pixy相机相关的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CrimeSTC: A Deep Spatial-Temporal-Categorical Network for Citywide Crime Prediction Detecting, Contextualizing and Computing Basic Mathematical Equations from Noisy Images using Machine Learning Part-Based Pedestrian Attribute Analysis The intelligent control system of optimal oil manufacturing production Machine Computing Function Designing for Creative Thinking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1