{"title":"A Low Power Viterbi Decoder Implementation using Scarce State Transition and Path Pruning Scheme for High Throughput Wireless Applications","authors":"Jie Jin, C. Tsui","doi":"10.1145/1165573.1165673","DOIUrl":null,"url":null,"abstract":"This paper presents a low power Viterbi decoder design based on scarce state transition (SST). We propose an approach which seamlessly integrates the path pruning techniques with the SST decoding to reduce the average add-compare-select (ACS) computation. The scheme has very low overhead and is practical for implementation. We also propose an uneven-partitioned memory architecture for the survivor memory unit to reduce the memory access power during the trace back operation. The proposed decoder is implemented in SMIC 0.18mum CMOS process. Simulation results show that significant power consumption reduction can be achieved for high throughput wireless systems such as MB-OFDM ultra-wide-band applications","PeriodicalId":119229,"journal":{"name":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1165573.1165673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
This paper presents a low power Viterbi decoder design based on scarce state transition (SST). We propose an approach which seamlessly integrates the path pruning techniques with the SST decoding to reduce the average add-compare-select (ACS) computation. The scheme has very low overhead and is practical for implementation. We also propose an uneven-partitioned memory architecture for the survivor memory unit to reduce the memory access power during the trace back operation. The proposed decoder is implemented in SMIC 0.18mum CMOS process. Simulation results show that significant power consumption reduction can be achieved for high throughput wireless systems such as MB-OFDM ultra-wide-band applications
提出了一种基于稀缺状态转换(SST)的低功耗维特比译码器设计。我们提出了一种将路径修剪技术与SST解码无缝集成的方法,以减少平均添加比较选择(ACS)计算。该方案开销很低,易于实现。我们还提出了幸存者内存单元的非均匀分区内存架构,以减少追溯操作期间的内存访问功率。该解码器采用中芯0.18 μ m CMOS工艺实现。仿真结果表明,对于MB-OFDM超宽带应用等高吞吐量无线系统,可以实现显著的功耗降低