Branch behavior of a commercial OLTP workload on Intel IA32 processors

M. Annavaram, T. Diep, John Paul Shen
{"title":"Branch behavior of a commercial OLTP workload on Intel IA32 processors","authors":"M. Annavaram, T. Diep, John Paul Shen","doi":"10.1109/ICCD.2002.1106777","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed branch characterization of an Oracle based commercial on-line transaction processing workload, Oracle Database Benchmark (ODB), running on an IA32 processor. We ran a well-tuned ODB on Simics, a full system simulator, to collect the instruction traces used in this study. We compare the branch behavior of ODB with the branch behaviors of gcc, gzip and mcf from the SPECINT 2000 benchmark suite. Contrary to the popular belief that databases have unpredictable branches, we show that using larger predictors that capture enough branch history information, and using branch prediction schemes that reduce aliasing, conditional branches in ODB are more predictable than in gcc, gzip and mcf Due to frequent context switching in ODB, a hardware return address stack is ineffective in predicting return addresses for ODB. Based on further analysis, we propose and evaluate an enhanced return address predictor, which reduces return address mispredictions in ODB by 40%.","PeriodicalId":164768,"journal":{"name":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2002.1106777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents a detailed branch characterization of an Oracle based commercial on-line transaction processing workload, Oracle Database Benchmark (ODB), running on an IA32 processor. We ran a well-tuned ODB on Simics, a full system simulator, to collect the instruction traces used in this study. We compare the branch behavior of ODB with the branch behaviors of gcc, gzip and mcf from the SPECINT 2000 benchmark suite. Contrary to the popular belief that databases have unpredictable branches, we show that using larger predictors that capture enough branch history information, and using branch prediction schemes that reduce aliasing, conditional branches in ODB are more predictable than in gcc, gzip and mcf Due to frequent context switching in ODB, a hardware return address stack is ineffective in predicting return addresses for ODB. Based on further analysis, we propose and evaluate an enhanced return address predictor, which reduces return address mispredictions in ODB by 40%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intel IA32处理器上商业OLTP工作负载的分支行为
本文介绍了在IA32处理器上运行的基于Oracle的商业在线事务处理工作负载Oracle Database Benchmark (ODB)的详细分支特征。我们在Simics(一个完整的系统模拟器)上运行了一个调优的ODB,以收集本研究中使用的指令跟踪。我们将ODB的分支行为与SPECINT 2000基准套件中的gcc、gzip和mcf的分支行为进行了比较。与普遍认为数据库具有不可预测的分支的观点相反,我们展示了使用更大的预测器来捕获足够的分支历史信息,并使用减少别名的分支预测方案,ODB中的条件分支比gcc、gzip和mcf中的条件分支更具可预测性。由于ODB中频繁的上下文切换,硬件返回地址堆栈在预测ODB的返回地址方面是无效的。在进一步分析的基础上,我们提出并评估了一个增强的返回地址预测器,它将ODB中的返回地址错误预测减少了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
JMA: the Java-multithreading architecture for embedded processors Legacy SystemC co-simulation of multi-processor systems-on-chip Accurate and efficient static timing analysis with crosstalk Register binding based power management for high-level synthesis of control-flow intensive behaviors On the impact of technology scaling on mixed PTL/static circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1