Towards multi-microphone speech dereverberation using spectral enhancement and statistical reverberation models

Emanuël Habets
{"title":"Towards multi-microphone speech dereverberation using spectral enhancement and statistical reverberation models","authors":"Emanuël Habets","doi":"10.1109/ACSSC.2008.5074521","DOIUrl":null,"url":null,"abstract":"In speech communication systems the received microphone signals are degraded by room reverberation and ambient noise. Reverberant speech can be separated into two components, viz. an early speech component and a late reverberant speech component. In this paper a multichannel dereverberation algorithm is proposed to suppress late reverberation. Specifically, we employ a minimum variance distortionless beamformer and a single-channel MMSE estimator, which operates on the beamformer's output signal. The so-called late reverberant spectral variance (LRSV) required by the MMSE estimator can be estimated using i) the beamformer's output signal or ii) the received microphone signals. In this contribution we investigate both approaches and show how a priori knowledge of the reverberant sound field can be exploited to improve the LRSV estimation. Advantages and disadvantages of the LRSV estimators are discussed, and experimental results using simulated reverberant speech are presented.","PeriodicalId":416114,"journal":{"name":"2008 42nd Asilomar Conference on Signals, Systems and Computers","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 42nd Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In speech communication systems the received microphone signals are degraded by room reverberation and ambient noise. Reverberant speech can be separated into two components, viz. an early speech component and a late reverberant speech component. In this paper a multichannel dereverberation algorithm is proposed to suppress late reverberation. Specifically, we employ a minimum variance distortionless beamformer and a single-channel MMSE estimator, which operates on the beamformer's output signal. The so-called late reverberant spectral variance (LRSV) required by the MMSE estimator can be estimated using i) the beamformer's output signal or ii) the received microphone signals. In this contribution we investigate both approaches and show how a priori knowledge of the reverberant sound field can be exploited to improve the LRSV estimation. Advantages and disadvantages of the LRSV estimators are discussed, and experimental results using simulated reverberant speech are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用频谱增强和统计混响模型实现多麦克风语音去混响
在语音通信系统中,接收到的传声器信号受到室内混响和环境噪声的影响。混响语音可以分为两个分量,即早期语音分量和晚期混响语音分量。本文提出了一种多通道去混响算法来抑制后期混响。具体来说,我们采用了一个最小方差无失真波束形成器和一个单通道MMSE估计器,它对波束形成器的输出信号进行操作。MMSE估计器所需的所谓晚混响频谱方差(LRSV)可以使用i)波束形成器的输出信号或ii)接收到的麦克风信号来估计。在本文中,我们研究了这两种方法,并展示了如何利用混响声场的先验知识来改进LRSV估计。讨论了LRSV估计器的优缺点,并给出了模拟混响语音的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavenumber domain focusing of squinted SAR data with a curved orbit geometry An automated three-dimensional visualization and classification of emphysema using neural network Analysis of voltage overscaled computer arithmetics in low power signal processing systems End-to-end antenna selection strategies for multi-hop relay channels Distributed demodulation using consensus averaging in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1