Multicore distributed dictionary learning: A microarray gene expression biclustering case study

Stephen Laide, J. McAllister
{"title":"Multicore distributed dictionary learning: A microarray gene expression biclustering case study","authors":"Stephen Laide, J. McAllister","doi":"10.1109/ICASSP.2017.7952340","DOIUrl":null,"url":null,"abstract":"The increasing pervasion and scale of machine learning technologies is posing fundamental challenges for their realisation. In the main, current algorithms are centralised, with a large number of processing agents, distributed across parallel processing resources, accessing a single, very large data object. This creates bottlenecks as a result of limited memory access rates. Distributed learning has the potential to resolve this problem by employing networks of co-operating agents each operating on subsets of the data, but as yet their suitability for realisation on parallel architectures such as multicore are unknown. This paper presents the results of a case study deploying distributed dictionary learning for microarray gene expression bi-clustering on a 16-core Epiphany multicore. It shows that distributed learning approaches can enable near-linear speed-up with the number of processing resources and, via the use of DMA-based communication, a 50% increase in throughput can be enabled.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The increasing pervasion and scale of machine learning technologies is posing fundamental challenges for their realisation. In the main, current algorithms are centralised, with a large number of processing agents, distributed across parallel processing resources, accessing a single, very large data object. This creates bottlenecks as a result of limited memory access rates. Distributed learning has the potential to resolve this problem by employing networks of co-operating agents each operating on subsets of the data, but as yet their suitability for realisation on parallel architectures such as multicore are unknown. This paper presents the results of a case study deploying distributed dictionary learning for microarray gene expression bi-clustering on a 16-core Epiphany multicore. It shows that distributed learning approaches can enable near-linear speed-up with the number of processing resources and, via the use of DMA-based communication, a 50% increase in throughput can be enabled.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多核分布式字典学习:微阵列基因表达双聚类案例研究
机器学习技术的日益普及和规模正在为它们的实现带来根本性的挑战。总的来说,当前的算法是集中式的,具有大量的处理代理,分布在并行处理资源上,访问单个非常大的数据对象。由于内存访问速率有限,这会造成瓶颈。分布式学习有可能通过使用协作代理网络来解决这个问题,每个代理都在数据的子集上操作,但到目前为止,它们在并行架构(如多核)上实现的适用性尚不清楚。本文介绍了在16核Epiphany多核上部署用于微阵列基因表达双聚类的分布式字典学习的案例研究结果。它表明,分布式学习方法可以实现处理资源数量的近线性加速,并且通过使用基于dma的通信,可以使吞吐量增加50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing observability in power distribution grids A subspace approach for shrinkage parameter selection in undersampled configuration for Regularised Tyler Estimators Artificial bandwidth extension using the constant Q transform Salience based lexical features for emotion recognition Multicore distributed dictionary learning: A microarray gene expression biclustering case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1