Orchestration of Real-Time Workflows with Varying Input Data Locality in a Heterogeneous Fog Environment

Georgios L. Stavrinides, H. Karatza
{"title":"Orchestration of Real-Time Workflows with Varying Input Data Locality in a Heterogeneous Fog Environment","authors":"Georgios L. Stavrinides, H. Karatza","doi":"10.1109/FMEC49853.2020.9144824","DOIUrl":null,"url":null,"abstract":"As fog computing continues to gain momentum, the effective orchestration of Internet of Things (IoT) workloads on such heterogeneous environments is an open challenge. In order to devise effective load balancing and scheduling strategies, it is crucial to gain a deeper understanding of how the locality of the workload initial input data affects the performance of such platforms. To this direction, in this paper we evaluate the performance of a heterogeneous fog environment where multiple data-intensive workflow jobs with deadline constraints arrive dynamically. Each entry component task of a workflow may require input data either from the IoT layer or from local fog resources (e.g., IoT data that have already been transferred to the fog layer or data processed by previous jobs). We investigate the impact of workflow entry task input data locality on the performance of the system, under different data location probabilities. This is the main goal and contribution of this work. The evaluation of the framework under study is performed via simulation, in an attempt to gain useful insights into how the locality of the workload input data affects the adopted performance metrics.","PeriodicalId":110283,"journal":{"name":"2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC49853.2020.9144824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

As fog computing continues to gain momentum, the effective orchestration of Internet of Things (IoT) workloads on such heterogeneous environments is an open challenge. In order to devise effective load balancing and scheduling strategies, it is crucial to gain a deeper understanding of how the locality of the workload initial input data affects the performance of such platforms. To this direction, in this paper we evaluate the performance of a heterogeneous fog environment where multiple data-intensive workflow jobs with deadline constraints arrive dynamically. Each entry component task of a workflow may require input data either from the IoT layer or from local fog resources (e.g., IoT data that have already been transferred to the fog layer or data processed by previous jobs). We investigate the impact of workflow entry task input data locality on the performance of the system, under different data location probabilities. This is the main goal and contribution of this work. The evaluation of the framework under study is performed via simulation, in an attempt to gain useful insights into how the locality of the workload input data affects the adopted performance metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构雾环境中具有不同输入数据位置的实时工作流编排
随着雾计算继续获得动力,在这种异构环境中有效地编排物联网(IoT)工作负载是一个公开的挑战。为了设计有效的负载平衡和调度策略,深入了解工作负载初始输入数据的位置如何影响此类平台的性能至关重要。为此,在本文中,我们评估了一个异构雾环境的性能,其中多个具有截止日期约束的数据密集型工作流作业是动态到达的。工作流的每个入口组件任务可能需要来自物联网层或本地雾资源的输入数据(例如,已经传输到雾层的物联网数据或以前工作处理的数据)。在不同的数据位置概率下,我们研究了工作流输入任务输入数据位置对系统性能的影响。这是本研究的主要目标和贡献。通过模拟对所研究的框架进行评估,试图获得有关工作负载输入数据的局部性如何影响所采用的性能指标的有用见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EasyCloud: a Rule based Toolkit for Multi-platform Cloud/Edge Service Management A Fog-Augmented Machine Learning based SMS Spam Detection and Classification System Privacy-Aware and Authentication based on Blockchain with Fault Tolerance for IoT enabled Fog Computing Ramble: Opportunistic Crowdsourcing of User-Generated Data using Mobile Edge Clouds Reducing Service Migrations in Fog Infrastructures by Optimizing Node Location
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1