Xiaofei Pu, Lei Wan, Yun Sheng, P. Chiang, Yajie Qin, Zhiliang Hong
{"title":"A wireless 8-channel ECG biopotential acquisition system for dry electrodes","authors":"Xiaofei Pu, Lei Wan, Yun Sheng, P. Chiang, Yajie Qin, Zhiliang Hong","doi":"10.1109/RFIT.2012.6401640","DOIUrl":null,"url":null,"abstract":"A wireless 8-channel biopotential acquisition system for capturing electrocardiogram (ECG) using dry electrodes is presented. The ECG system consists of copper electrodes, a micropowered 8-channel custom ASIC, and an off-the-shelf microprocessor and bluetooth radio. Each analog channel of the custom ECG front-end is composed of a chopper-modulated instrumentation amplifier (CMIA) with chopping spike filter (CSF), a programmable gain amplifier (PGA), and a output buffer. Implemented in standard a 0.35 μm CMOS technology, the ECG front-end consumes 101 μA from a 2.7 V supply, occupying 5 mm2 of chip area. Measurement results show an input impedance of 1 G Ω, an input-referred noise of 0.97 μVrms (0.5 ~ 100 Hz), and a CMRR of 114 dB. Finally, a complete wireless 8-channel ECG monitoring system incorporating this analog front-end is demonstrated, showing successful recordings of a capture ECG waveform using a smart phone.","PeriodicalId":187550,"journal":{"name":"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2012.6401640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
A wireless 8-channel biopotential acquisition system for capturing electrocardiogram (ECG) using dry electrodes is presented. The ECG system consists of copper electrodes, a micropowered 8-channel custom ASIC, and an off-the-shelf microprocessor and bluetooth radio. Each analog channel of the custom ECG front-end is composed of a chopper-modulated instrumentation amplifier (CMIA) with chopping spike filter (CSF), a programmable gain amplifier (PGA), and a output buffer. Implemented in standard a 0.35 μm CMOS technology, the ECG front-end consumes 101 μA from a 2.7 V supply, occupying 5 mm2 of chip area. Measurement results show an input impedance of 1 G Ω, an input-referred noise of 0.97 μVrms (0.5 ~ 100 Hz), and a CMRR of 114 dB. Finally, a complete wireless 8-channel ECG monitoring system incorporating this analog front-end is demonstrated, showing successful recordings of a capture ECG waveform using a smart phone.